| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrrernmpt.x |
|- F/ x ph |
| 2 |
|
supxrrernmpt.a |
|- ( ph -> A =/= (/) ) |
| 3 |
|
supxrrernmpt.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 4 |
|
supxrrernmpt.y |
|- ( ph -> E. y e. RR A. x e. A B <_ y ) |
| 5 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 6 |
1 5 3
|
rnmptssd |
|- ( ph -> ran ( x e. A |-> B ) C_ RR ) |
| 7 |
1 3 5 2
|
rnmptn0 |
|- ( ph -> ran ( x e. A |-> B ) =/= (/) ) |
| 8 |
1 4
|
rnmptbdd |
|- ( ph -> E. y e. RR A. z e. ran ( x e. A |-> B ) z <_ y ) |
| 9 |
|
supxrre |
|- ( ( ran ( x e. A |-> B ) C_ RR /\ ran ( x e. A |-> B ) =/= (/) /\ E. y e. RR A. z e. ran ( x e. A |-> B ) z <_ y ) -> sup ( ran ( x e. A |-> B ) , RR* , < ) = sup ( ran ( x e. A |-> B ) , RR , < ) ) |
| 10 |
6 7 8 9
|
syl3anc |
|- ( ph -> sup ( ran ( x e. A |-> B ) , RR* , < ) = sup ( ran ( x e. A |-> B ) , RR , < ) ) |