Metamath Proof Explorer


Theorem symgextfve

Description: The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019)

Ref Expression
Hypotheses symgext.s
|- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
symgext.e
|- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) )
Assertion symgextfve
|- ( K e. N -> ( X = K -> ( E ` X ) = K ) )

Proof

Step Hyp Ref Expression
1 symgext.s
 |-  S = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
2 symgext.e
 |-  E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) )
3 fveq2
 |-  ( X = K -> ( E ` X ) = ( E ` K ) )
4 iftrue
 |-  ( x = K -> if ( x = K , K , ( Z ` x ) ) = K )
5 4 2 fvmptg
 |-  ( ( K e. N /\ K e. N ) -> ( E ` K ) = K )
6 5 anidms
 |-  ( K e. N -> ( E ` K ) = K )
7 3 6 sylan9eqr
 |-  ( ( K e. N /\ X = K ) -> ( E ` X ) = K )
8 7 ex
 |-  ( K e. N -> ( X = K -> ( E ` X ) = K ) )