Description: The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgext.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | |
| symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) | ||
| Assertion | symgextfve | |- ( K e. N -> ( X = K -> ( E ` X ) = K ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | symgext.s |  |-  S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | |
| 2 | symgext.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) | |
| 3 | fveq2 | |- ( X = K -> ( E ` X ) = ( E ` K ) ) | |
| 4 | iftrue | |- ( x = K -> if ( x = K , K , ( Z ` x ) ) = K ) | |
| 5 | 4 2 | fvmptg | |- ( ( K e. N /\ K e. N ) -> ( E ` K ) = K ) | 
| 6 | 5 | anidms | |- ( K e. N -> ( E ` K ) = K ) | 
| 7 | 3 6 | sylan9eqr | |- ( ( K e. N /\ X = K ) -> ( E ` X ) = K ) | 
| 8 | 7 | ex | |- ( K e. N -> ( X = K -> ( E ` X ) = K ) ) |