| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssid | 
							 |-  ( TC ` A ) C_ ( TC ` A )  | 
						
						
							| 2 | 
							
								
							 | 
							tctr | 
							 |-  Tr ( TC ` A )  | 
						
						
							| 3 | 
							
								
							 | 
							fvex | 
							 |-  ( TC ` A ) e. _V  | 
						
						
							| 4 | 
							
								
							 | 
							tcmin | 
							 |-  ( ( TC ` A ) e. _V -> ( ( ( TC ` A ) C_ ( TC ` A ) /\ Tr ( TC ` A ) ) -> ( TC ` ( TC ` A ) ) C_ ( TC ` A ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							ax-mp | 
							 |-  ( ( ( TC ` A ) C_ ( TC ` A ) /\ Tr ( TC ` A ) ) -> ( TC ` ( TC ` A ) ) C_ ( TC ` A ) )  | 
						
						
							| 6 | 
							
								1 2 5
							 | 
							mp2an | 
							 |-  ( TC ` ( TC ` A ) ) C_ ( TC ` A )  | 
						
						
							| 7 | 
							
								
							 | 
							tcid | 
							 |-  ( ( TC ` A ) e. _V -> ( TC ` A ) C_ ( TC ` ( TC ` A ) ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							ax-mp | 
							 |-  ( TC ` A ) C_ ( TC ` ( TC ` A ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							eqssi | 
							 |-  ( TC ` ( TC ` A ) ) = ( TC ` A )  |