| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgsas.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tgsas.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | tgsas.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | tgsas.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | tgsas.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | tgsas.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | tgsas.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | tgsas.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | tgsas.e |  |-  ( ph -> E e. P ) | 
						
							| 10 |  | tgsas.f |  |-  ( ph -> F e. P ) | 
						
							| 11 |  | tgsas.1 |  |-  ( ph -> ( A .- B ) = ( D .- E ) ) | 
						
							| 12 |  | tgsas.2 |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 13 |  | tgsas.3 |  |-  ( ph -> ( B .- C ) = ( E .- F ) ) | 
						
							| 14 |  | tgsas2.4 |  |-  ( ph -> A =/= C ) | 
						
							| 15 |  | eqid |  |-  ( hlG ` G ) = ( hlG ` G ) | 
						
							| 16 |  | eqid |  |-  ( cgrG ` G ) = ( cgrG ` G ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | tgsas |  |-  ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> ) | 
						
							| 18 | 1 2 3 16 4 5 6 7 8 9 10 17 | cgr3rotr |  |-  ( ph -> <" C A B "> ( cgrG ` G ) <" F D E "> ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | tgsas1 |  |-  ( ph -> ( C .- A ) = ( F .- D ) ) | 
						
							| 20 | 14 | necomd |  |-  ( ph -> C =/= A ) | 
						
							| 21 | 1 2 3 4 7 5 10 8 19 20 | tgcgrneq |  |-  ( ph -> F =/= D ) | 
						
							| 22 | 1 3 15 10 5 8 4 21 | hlid |  |-  ( ph -> F ( ( hlG ` G ) ` D ) F ) | 
						
							| 23 | 1 3 15 4 5 6 7 8 9 10 12 | cgrane3 |  |-  ( ph -> E =/= D ) | 
						
							| 24 | 1 3 15 9 5 8 4 23 | hlid |  |-  ( ph -> E ( ( hlG ` G ) ` D ) E ) | 
						
							| 25 | 1 3 15 4 7 5 6 10 8 9 10 9 18 22 24 | iscgrad |  |-  ( ph -> <" C A B "> ( cgrA ` G ) <" F D E "> ) |