| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgsas.p |
|- P = ( Base ` G ) |
| 2 |
|
tgsas.m |
|- .- = ( dist ` G ) |
| 3 |
|
tgsas.i |
|- I = ( Itv ` G ) |
| 4 |
|
tgsas.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tgsas.a |
|- ( ph -> A e. P ) |
| 6 |
|
tgsas.b |
|- ( ph -> B e. P ) |
| 7 |
|
tgsas.c |
|- ( ph -> C e. P ) |
| 8 |
|
tgsas.d |
|- ( ph -> D e. P ) |
| 9 |
|
tgsas.e |
|- ( ph -> E e. P ) |
| 10 |
|
tgsas.f |
|- ( ph -> F e. P ) |
| 11 |
|
tgsas.1 |
|- ( ph -> ( A .- B ) = ( D .- E ) ) |
| 12 |
|
tgsas.2 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 13 |
|
tgsas.3 |
|- ( ph -> ( B .- C ) = ( E .- F ) ) |
| 14 |
|
tgsas2.4 |
|- ( ph -> A =/= C ) |
| 15 |
|
eqid |
|- ( hlG ` G ) = ( hlG ` G ) |
| 16 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 17 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
tgsas |
|- ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> ) |
| 18 |
1 2 3 16 4 5 6 7 8 9 10 17
|
cgr3rotr |
|- ( ph -> <" C A B "> ( cgrG ` G ) <" F D E "> ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
tgsas1 |
|- ( ph -> ( C .- A ) = ( F .- D ) ) |
| 20 |
14
|
necomd |
|- ( ph -> C =/= A ) |
| 21 |
1 2 3 4 7 5 10 8 19 20
|
tgcgrneq |
|- ( ph -> F =/= D ) |
| 22 |
1 3 15 10 5 8 4 21
|
hlid |
|- ( ph -> F ( ( hlG ` G ) ` D ) F ) |
| 23 |
1 3 15 4 5 6 7 8 9 10 12
|
cgrane3 |
|- ( ph -> E =/= D ) |
| 24 |
1 3 15 9 5 8 4 23
|
hlid |
|- ( ph -> E ( ( hlG ` G ) ` D ) E ) |
| 25 |
1 3 15 4 7 5 6 10 8 9 10 9 18 22 24
|
iscgrad |
|- ( ph -> <" C A B "> ( cgrA ` G ) <" F D E "> ) |