Metamath Proof Explorer


Theorem tgsas2

Description: First congruence theorem: SAS. Theorem 11.49 of Schwabhauser p. 107. (Contributed by Thierry Arnoux, 1-Aug-2020)

Ref Expression
Hypotheses tgsas.p 𝑃 = ( Base ‘ 𝐺 )
tgsas.m = ( dist ‘ 𝐺 )
tgsas.i 𝐼 = ( Itv ‘ 𝐺 )
tgsas.g ( 𝜑𝐺 ∈ TarskiG )
tgsas.a ( 𝜑𝐴𝑃 )
tgsas.b ( 𝜑𝐵𝑃 )
tgsas.c ( 𝜑𝐶𝑃 )
tgsas.d ( 𝜑𝐷𝑃 )
tgsas.e ( 𝜑𝐸𝑃 )
tgsas.f ( 𝜑𝐹𝑃 )
tgsas.1 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐷 𝐸 ) )
tgsas.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
tgsas.3 ( 𝜑 → ( 𝐵 𝐶 ) = ( 𝐸 𝐹 ) )
tgsas2.4 ( 𝜑𝐴𝐶 )
Assertion tgsas2 ( 𝜑 → ⟨“ 𝐶 𝐴 𝐵 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐹 𝐷 𝐸 ”⟩ )

Proof

Step Hyp Ref Expression
1 tgsas.p 𝑃 = ( Base ‘ 𝐺 )
2 tgsas.m = ( dist ‘ 𝐺 )
3 tgsas.i 𝐼 = ( Itv ‘ 𝐺 )
4 tgsas.g ( 𝜑𝐺 ∈ TarskiG )
5 tgsas.a ( 𝜑𝐴𝑃 )
6 tgsas.b ( 𝜑𝐵𝑃 )
7 tgsas.c ( 𝜑𝐶𝑃 )
8 tgsas.d ( 𝜑𝐷𝑃 )
9 tgsas.e ( 𝜑𝐸𝑃 )
10 tgsas.f ( 𝜑𝐹𝑃 )
11 tgsas.1 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐷 𝐸 ) )
12 tgsas.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
13 tgsas.3 ( 𝜑 → ( 𝐵 𝐶 ) = ( 𝐸 𝐹 ) )
14 tgsas2.4 ( 𝜑𝐴𝐶 )
15 eqid ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 )
16 eqid ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 tgsas ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
18 1 2 3 16 4 5 6 7 8 9 10 17 cgr3rotr ( 𝜑 → ⟨“ 𝐶 𝐴 𝐵 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐹 𝐷 𝐸 ”⟩ )
19 1 2 3 4 5 6 7 8 9 10 11 12 13 tgsas1 ( 𝜑 → ( 𝐶 𝐴 ) = ( 𝐹 𝐷 ) )
20 14 necomd ( 𝜑𝐶𝐴 )
21 1 2 3 4 7 5 10 8 19 20 tgcgrneq ( 𝜑𝐹𝐷 )
22 1 3 15 10 5 8 4 21 hlid ( 𝜑𝐹 ( ( hlG ‘ 𝐺 ) ‘ 𝐷 ) 𝐹 )
23 1 3 15 4 5 6 7 8 9 10 12 cgrane3 ( 𝜑𝐸𝐷 )
24 1 3 15 9 5 8 4 23 hlid ( 𝜑𝐸 ( ( hlG ‘ 𝐺 ) ‘ 𝐷 ) 𝐸 )
25 1 3 15 4 7 5 6 10 8 9 10 9 18 22 24 iscgrad ( 𝜑 → ⟨“ 𝐶 𝐴 𝐵 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐹 𝐷 𝐸 ”⟩ )