| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgsas.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tgsas.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | tgsas.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | tgsas.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | tgsas.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | tgsas.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | tgsas.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | tgsas.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | tgsas.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 10 |  | tgsas.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 11 |  | tgsas.1 | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐸 ) ) | 
						
							| 12 |  | tgsas.2 | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 13 |  | tgsas.3 | ⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  =  ( 𝐸  −  𝐹 ) ) | 
						
							| 14 |  | eqid | ⊢ ( hlG ‘ 𝐺 )  =  ( hlG ‘ 𝐺 ) | 
						
							| 15 | 1 3 14 4 5 6 7 8 9 10 12 | cgrane1 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 16 | 1 3 14 5 5 6 4 15 | hlid | ⊢ ( 𝜑  →  𝐴 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴 ) | 
						
							| 17 | 1 3 14 4 5 6 7 8 9 10 12 | cgrane2 | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 18 | 17 | necomd | ⊢ ( 𝜑  →  𝐶  ≠  𝐵 ) | 
						
							| 19 | 1 3 14 7 5 6 4 18 | hlid | ⊢ ( 𝜑  →  𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐶 ) | 
						
							| 20 | 1 2 3 4 5 6 8 9 11 | tgcgrcomlr | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  =  ( 𝐸  −  𝐷 ) ) | 
						
							| 21 | 1 3 14 4 5 6 7 8 9 10 12 5 2 7 16 19 20 13 | cgracgr | ⊢ ( 𝜑  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) ) | 
						
							| 22 | 1 2 3 4 5 7 8 10 21 | tgcgrcomlr | ⊢ ( 𝜑  →  ( 𝐶  −  𝐴 )  =  ( 𝐹  −  𝐷 ) ) |