| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgsas.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tgsas.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tgsas.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tgsas.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tgsas.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tgsas.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
tgsas.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
tgsas.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
tgsas.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 10 |
|
tgsas.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 11 |
|
tgsas.1 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 12 |
|
tgsas.2 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
| 13 |
|
tgsas.3 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 14 |
|
eqid |
⊢ ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 ) |
| 15 |
1 3 14 4 5 6 7 8 9 10 12
|
cgrane1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 16 |
1 3 14 5 5 6 4 15
|
hlid |
⊢ ( 𝜑 → 𝐴 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴 ) |
| 17 |
1 3 14 4 5 6 7 8 9 10 12
|
cgrane2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 18 |
17
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
| 19 |
1 3 14 7 5 6 4 18
|
hlid |
⊢ ( 𝜑 → 𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐶 ) |
| 20 |
1 2 3 4 5 6 8 9 11
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
| 21 |
1 3 14 4 5 6 7 8 9 10 12 5 2 7 16 19 20 13
|
cgracgr |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 22 |
1 2 3 4 5 7 8 10 21
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |