Metamath Proof Explorer


Theorem tmsxms

Description: The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypothesis tmsbas.k
|- K = ( toMetSp ` D )
Assertion tmsxms
|- ( D e. ( *Met ` X ) -> K e. *MetSp )

Proof

Step Hyp Ref Expression
1 tmsbas.k
 |-  K = ( toMetSp ` D )
2 1 tmsds
 |-  ( D e. ( *Met ` X ) -> D = ( dist ` K ) )
3 1 tmsbas
 |-  ( D e. ( *Met ` X ) -> X = ( Base ` K ) )
4 3 fveq2d
 |-  ( D e. ( *Met ` X ) -> ( *Met ` X ) = ( *Met ` ( Base ` K ) ) )
5 2 4 eleq12d
 |-  ( D e. ( *Met ` X ) -> ( D e. ( *Met ` X ) <-> ( dist ` K ) e. ( *Met ` ( Base ` K ) ) ) )
6 5 ibi
 |-  ( D e. ( *Met ` X ) -> ( dist ` K ) e. ( *Met ` ( Base ` K ) ) )
7 ssid
 |-  ( Base ` K ) C_ ( Base ` K )
8 xmetres2
 |-  ( ( ( dist ` K ) e. ( *Met ` ( Base ` K ) ) /\ ( Base ` K ) C_ ( Base ` K ) ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) )
9 6 7 8 sylancl
 |-  ( D e. ( *Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) )
10 xmetf
 |-  ( ( dist ` K ) e. ( *Met ` ( Base ` K ) ) -> ( dist ` K ) : ( ( Base ` K ) X. ( Base ` K ) ) --> RR* )
11 ffn
 |-  ( ( dist ` K ) : ( ( Base ` K ) X. ( Base ` K ) ) --> RR* -> ( dist ` K ) Fn ( ( Base ` K ) X. ( Base ` K ) ) )
12 fnresdm
 |-  ( ( dist ` K ) Fn ( ( Base ` K ) X. ( Base ` K ) ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( dist ` K ) )
13 6 10 11 12 4syl
 |-  ( D e. ( *Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( dist ` K ) )
14 13 2 eqtr4d
 |-  ( D e. ( *Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = D )
15 14 fveq2d
 |-  ( D e. ( *Met ` X ) -> ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) = ( MetOpen ` D ) )
16 eqid
 |-  ( MetOpen ` D ) = ( MetOpen ` D )
17 1 16 tmstopn
 |-  ( D e. ( *Met ` X ) -> ( MetOpen ` D ) = ( TopOpen ` K ) )
18 15 17 eqtr2d
 |-  ( D e. ( *Met ` X ) -> ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) )
19 eqid
 |-  ( TopOpen ` K ) = ( TopOpen ` K )
20 eqid
 |-  ( Base ` K ) = ( Base ` K )
21 eqid
 |-  ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) )
22 19 20 21 isxms2
 |-  ( K e. *MetSp <-> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) /\ ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) )
23 9 18 22 sylanbrc
 |-  ( D e. ( *Met ` X ) -> K e. *MetSp )