Metamath Proof Explorer


Theorem tmsxms

Description: The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypothesis tmsbas.k K=toMetSpD
Assertion tmsxms D∞MetXK∞MetSp

Proof

Step Hyp Ref Expression
1 tmsbas.k K=toMetSpD
2 1 tmsds D∞MetXD=distK
3 1 tmsbas D∞MetXX=BaseK
4 3 fveq2d D∞MetX∞MetX=∞MetBaseK
5 2 4 eleq12d D∞MetXD∞MetXdistK∞MetBaseK
6 5 ibi D∞MetXdistK∞MetBaseK
7 ssid BaseKBaseK
8 xmetres2 distK∞MetBaseKBaseKBaseKdistKBaseK×BaseK∞MetBaseK
9 6 7 8 sylancl D∞MetXdistKBaseK×BaseK∞MetBaseK
10 xmetf distK∞MetBaseKdistK:BaseK×BaseK*
11 ffn distK:BaseK×BaseK*distKFnBaseK×BaseK
12 fnresdm distKFnBaseK×BaseKdistKBaseK×BaseK=distK
13 6 10 11 12 4syl D∞MetXdistKBaseK×BaseK=distK
14 13 2 eqtr4d D∞MetXdistKBaseK×BaseK=D
15 14 fveq2d D∞MetXMetOpendistKBaseK×BaseK=MetOpenD
16 eqid MetOpenD=MetOpenD
17 1 16 tmstopn D∞MetXMetOpenD=TopOpenK
18 15 17 eqtr2d D∞MetXTopOpenK=MetOpendistKBaseK×BaseK
19 eqid TopOpenK=TopOpenK
20 eqid BaseK=BaseK
21 eqid distKBaseK×BaseK=distKBaseK×BaseK
22 19 20 21 isxms2 K∞MetSpdistKBaseK×BaseK∞MetBaseKTopOpenK=MetOpendistKBaseK×BaseK
23 9 18 22 sylanbrc D∞MetXK∞MetSp