Step |
Hyp |
Ref |
Expression |
1 |
|
topontop |
|- ( J e. ( TopOn ` X ) -> J e. Top ) |
2 |
|
0opn |
|- ( J e. Top -> (/) e. J ) |
3 |
1 2
|
syl |
|- ( J e. ( TopOn ` X ) -> (/) e. J ) |
4 |
|
toponmax |
|- ( J e. ( TopOn ` X ) -> X e. J ) |
5 |
3 4
|
prssd |
|- ( J e. ( TopOn ` X ) -> { (/) , X } C_ J ) |
6 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
7 |
|
eqimss2 |
|- ( X = U. J -> U. J C_ X ) |
8 |
6 7
|
syl |
|- ( J e. ( TopOn ` X ) -> U. J C_ X ) |
9 |
|
sspwuni |
|- ( J C_ ~P X <-> U. J C_ X ) |
10 |
8 9
|
sylibr |
|- ( J e. ( TopOn ` X ) -> J C_ ~P X ) |
11 |
5 10
|
jca |
|- ( J e. ( TopOn ` X ) -> ( { (/) , X } C_ J /\ J C_ ~P X ) ) |