Metamath Proof Explorer


Theorem toplatmeet

Description: Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses toplatmeet.i
|- I = ( toInc ` J )
toplatmeet.j
|- ( ph -> J e. Top )
toplatmeet.a
|- ( ph -> A e. J )
toplatmeet.b
|- ( ph -> B e. J )
toplatmeet.m
|- ./\ = ( meet ` I )
Assertion toplatmeet
|- ( ph -> ( A ./\ B ) = ( A i^i B ) )

Proof

Step Hyp Ref Expression
1 toplatmeet.i
 |-  I = ( toInc ` J )
2 toplatmeet.j
 |-  ( ph -> J e. Top )
3 toplatmeet.a
 |-  ( ph -> A e. J )
4 toplatmeet.b
 |-  ( ph -> B e. J )
5 toplatmeet.m
 |-  ./\ = ( meet ` I )
6 eqid
 |-  ( glb ` I ) = ( glb ` I )
7 1 ipopos
 |-  I e. Poset
8 7 a1i
 |-  ( ph -> I e. Poset )
9 6 5 8 3 4 meetval
 |-  ( ph -> ( A ./\ B ) = ( ( glb ` I ) ` { A , B } ) )
10 3 4 prssd
 |-  ( ph -> { A , B } C_ J )
11 6 a1i
 |-  ( ph -> ( glb ` I ) = ( glb ` I ) )
12 intprg
 |-  ( ( A e. J /\ B e. J ) -> |^| { A , B } = ( A i^i B ) )
13 3 4 12 syl2anc
 |-  ( ph -> |^| { A , B } = ( A i^i B ) )
14 inopn
 |-  ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J )
15 2 3 4 14 syl3anc
 |-  ( ph -> ( A i^i B ) e. J )
16 13 15 eqeltrd
 |-  ( ph -> |^| { A , B } e. J )
17 unimax
 |-  ( |^| { A , B } e. J -> U. { x e. J | x C_ |^| { A , B } } = |^| { A , B } )
18 16 17 syl
 |-  ( ph -> U. { x e. J | x C_ |^| { A , B } } = |^| { A , B } )
19 18 13 eqtr2d
 |-  ( ph -> ( A i^i B ) = U. { x e. J | x C_ |^| { A , B } } )
20 1 2 10 11 19 15 ipoglb
 |-  ( ph -> ( ( glb ` I ) ` { A , B } ) = ( A i^i B ) )
21 9 20 eqtrd
 |-  ( ph -> ( A ./\ B ) = ( A i^i B ) )