Metamath Proof Explorer


Theorem topmtcl

Description: The meet of a collection of topologies on X is again a topology on X . (Contributed by Jeff Hankins, 5-Oct-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion topmtcl
|- ( ( X e. V /\ S C_ ( TopOn ` X ) ) -> ( ~P X i^i |^| S ) e. ( TopOn ` X ) )

Proof

Step Hyp Ref Expression
1 toponmre
 |-  ( X e. V -> ( TopOn ` X ) e. ( Moore ` ~P X ) )
2 mrerintcl
 |-  ( ( ( TopOn ` X ) e. ( Moore ` ~P X ) /\ S C_ ( TopOn ` X ) ) -> ( ~P X i^i |^| S ) e. ( TopOn ` X ) )
3 1 2 sylan
 |-  ( ( X e. V /\ S C_ ( TopOn ` X ) ) -> ( ~P X i^i |^| S ) e. ( TopOn ` X ) )