Metamath Proof Explorer


Theorem topmtcl

Description: The meet of a collection of topologies on X is again a topology on X . (Contributed by Jeff Hankins, 5-Oct-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion topmtcl ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 𝑆 ) ∈ ( TopOn ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 toponmre ( 𝑋𝑉 → ( TopOn ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) )
2 mrerintcl ( ( ( TopOn ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 𝑆 ) ∈ ( TopOn ‘ 𝑋 ) )
3 1 2 sylan ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 𝑆 ) ∈ ( TopOn ‘ 𝑋 ) )