| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topmtcl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
inss2 |
⊢ ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ⊆ ∩ 𝑆 |
| 3 |
|
intss1 |
⊢ ( 𝑗 ∈ 𝑆 → ∩ 𝑆 ⊆ 𝑗 ) |
| 4 |
2 3
|
sstrid |
⊢ ( 𝑗 ∈ 𝑆 → ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ⊆ 𝑗 ) |
| 5 |
4
|
rgen |
⊢ ∀ 𝑗 ∈ 𝑆 ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ⊆ 𝑗 |
| 6 |
|
sseq1 |
⊢ ( 𝑘 = ( 𝒫 𝑋 ∩ ∩ 𝑆 ) → ( 𝑘 ⊆ 𝑗 ↔ ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ⊆ 𝑗 ) ) |
| 7 |
6
|
ralbidv |
⊢ ( 𝑘 = ( 𝒫 𝑋 ∩ ∩ 𝑆 ) → ( ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 ↔ ∀ 𝑗 ∈ 𝑆 ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ⊆ 𝑗 ) ) |
| 8 |
7
|
elrab |
⊢ ( ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ∈ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 } ↔ ( ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ⊆ 𝑗 ) ) |
| 9 |
5 8
|
mpbiran2 |
⊢ ( ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ∈ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 } ↔ ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 10 |
1 9
|
sylibr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ∈ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 } ) |
| 11 |
|
elssuni |
⊢ ( ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ∈ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 } → ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ⊆ ∪ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 } ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ⊆ ∪ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 } ) |
| 13 |
|
toponuni |
⊢ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝑘 ) |
| 14 |
|
eqimss2 |
⊢ ( 𝑋 = ∪ 𝑘 → ∪ 𝑘 ⊆ 𝑋 ) |
| 15 |
13 14
|
syl |
⊢ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → ∪ 𝑘 ⊆ 𝑋 ) |
| 16 |
|
sspwuni |
⊢ ( 𝑘 ⊆ 𝒫 𝑋 ↔ ∪ 𝑘 ⊆ 𝑋 ) |
| 17 |
15 16
|
sylibr |
⊢ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → 𝑘 ⊆ 𝒫 𝑋 ) |
| 18 |
17
|
3ad2ant2 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 ) → 𝑘 ⊆ 𝒫 𝑋 ) |
| 19 |
|
simp3 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 ) → ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 ) |
| 20 |
|
ssint |
⊢ ( 𝑘 ⊆ ∩ 𝑆 ↔ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 ) |
| 21 |
19 20
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 ) → 𝑘 ⊆ ∩ 𝑆 ) |
| 22 |
18 21
|
ssind |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 ) → 𝑘 ⊆ ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ) |
| 23 |
|
velpw |
⊢ ( 𝑘 ∈ 𝒫 ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ↔ 𝑘 ⊆ ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ) |
| 24 |
22 23
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 ) → 𝑘 ∈ 𝒫 ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ) |
| 25 |
24
|
rabssdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 } ⊆ 𝒫 ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ) |
| 26 |
|
sspwuni |
⊢ ( { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 } ⊆ 𝒫 ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ↔ ∪ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 } ⊆ ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ) |
| 27 |
25 26
|
sylib |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ∪ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 } ⊆ ( 𝒫 𝑋 ∩ ∩ 𝑆 ) ) |
| 28 |
12 27
|
eqssd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑆 ) = ∪ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 } ) |