| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topmtcl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( 𝒫  𝑋  ∩  ∩  𝑆 )  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 2 |  | inss2 | ⊢ ( 𝒫  𝑋  ∩  ∩  𝑆 )  ⊆  ∩  𝑆 | 
						
							| 3 |  | intss1 | ⊢ ( 𝑗  ∈  𝑆  →  ∩  𝑆  ⊆  𝑗 ) | 
						
							| 4 | 2 3 | sstrid | ⊢ ( 𝑗  ∈  𝑆  →  ( 𝒫  𝑋  ∩  ∩  𝑆 )  ⊆  𝑗 ) | 
						
							| 5 | 4 | rgen | ⊢ ∀ 𝑗  ∈  𝑆 ( 𝒫  𝑋  ∩  ∩  𝑆 )  ⊆  𝑗 | 
						
							| 6 |  | sseq1 | ⊢ ( 𝑘  =  ( 𝒫  𝑋  ∩  ∩  𝑆 )  →  ( 𝑘  ⊆  𝑗  ↔  ( 𝒫  𝑋  ∩  ∩  𝑆 )  ⊆  𝑗 ) ) | 
						
							| 7 | 6 | ralbidv | ⊢ ( 𝑘  =  ( 𝒫  𝑋  ∩  ∩  𝑆 )  →  ( ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗  ↔  ∀ 𝑗  ∈  𝑆 ( 𝒫  𝑋  ∩  ∩  𝑆 )  ⊆  𝑗 ) ) | 
						
							| 8 | 7 | elrab | ⊢ ( ( 𝒫  𝑋  ∩  ∩  𝑆 )  ∈  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 }  ↔  ( ( 𝒫  𝑋  ∩  ∩  𝑆 )  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 ( 𝒫  𝑋  ∩  ∩  𝑆 )  ⊆  𝑗 ) ) | 
						
							| 9 | 5 8 | mpbiran2 | ⊢ ( ( 𝒫  𝑋  ∩  ∩  𝑆 )  ∈  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 }  ↔  ( 𝒫  𝑋  ∩  ∩  𝑆 )  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 10 | 1 9 | sylibr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( 𝒫  𝑋  ∩  ∩  𝑆 )  ∈  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 } ) | 
						
							| 11 |  | elssuni | ⊢ ( ( 𝒫  𝑋  ∩  ∩  𝑆 )  ∈  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 }  →  ( 𝒫  𝑋  ∩  ∩  𝑆 )  ⊆  ∪  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 } ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( 𝒫  𝑋  ∩  ∩  𝑆 )  ⊆  ∪  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 } ) | 
						
							| 13 |  | toponuni | ⊢ ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝑘 ) | 
						
							| 14 |  | eqimss2 | ⊢ ( 𝑋  =  ∪  𝑘  →  ∪  𝑘  ⊆  𝑋 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  →  ∪  𝑘  ⊆  𝑋 ) | 
						
							| 16 |  | sspwuni | ⊢ ( 𝑘  ⊆  𝒫  𝑋  ↔  ∪  𝑘  ⊆  𝑋 ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  →  𝑘  ⊆  𝒫  𝑋 ) | 
						
							| 18 | 17 | 3ad2ant2 | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 )  →  𝑘  ⊆  𝒫  𝑋 ) | 
						
							| 19 |  | simp3 | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 )  →  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 ) | 
						
							| 20 |  | ssint | ⊢ ( 𝑘  ⊆  ∩  𝑆  ↔  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 ) | 
						
							| 21 | 19 20 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 )  →  𝑘  ⊆  ∩  𝑆 ) | 
						
							| 22 | 18 21 | ssind | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 )  →  𝑘  ⊆  ( 𝒫  𝑋  ∩  ∩  𝑆 ) ) | 
						
							| 23 |  | velpw | ⊢ ( 𝑘  ∈  𝒫  ( 𝒫  𝑋  ∩  ∩  𝑆 )  ↔  𝑘  ⊆  ( 𝒫  𝑋  ∩  ∩  𝑆 ) ) | 
						
							| 24 | 22 23 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 )  →  𝑘  ∈  𝒫  ( 𝒫  𝑋  ∩  ∩  𝑆 ) ) | 
						
							| 25 | 24 | rabssdv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 }  ⊆  𝒫  ( 𝒫  𝑋  ∩  ∩  𝑆 ) ) | 
						
							| 26 |  | sspwuni | ⊢ ( { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 }  ⊆  𝒫  ( 𝒫  𝑋  ∩  ∩  𝑆 )  ↔  ∪  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 }  ⊆  ( 𝒫  𝑋  ∩  ∩  𝑆 ) ) | 
						
							| 27 | 25 26 | sylib | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ∪  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 }  ⊆  ( 𝒫  𝑋  ∩  ∩  𝑆 ) ) | 
						
							| 28 | 12 27 | eqssd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( 𝒫  𝑋  ∩  ∩  𝑆 )  =  ∪  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑘  ⊆  𝑗 } ) |