Metamath Proof Explorer


Theorem topmeet

Description: Two equivalent formulations of the meet of a collection of topologies. (Contributed by Jeff Hankins, 4-Oct-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion topmeet ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 𝑆 ) = { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } )

Proof

Step Hyp Ref Expression
1 topmtcl ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 𝑆 ) ∈ ( TopOn ‘ 𝑋 ) )
2 inss2 ( 𝒫 𝑋 𝑆 ) ⊆ 𝑆
3 intss1 ( 𝑗𝑆 𝑆𝑗 )
4 2 3 sstrid ( 𝑗𝑆 → ( 𝒫 𝑋 𝑆 ) ⊆ 𝑗 )
5 4 rgen 𝑗𝑆 ( 𝒫 𝑋 𝑆 ) ⊆ 𝑗
6 sseq1 ( 𝑘 = ( 𝒫 𝑋 𝑆 ) → ( 𝑘𝑗 ↔ ( 𝒫 𝑋 𝑆 ) ⊆ 𝑗 ) )
7 6 ralbidv ( 𝑘 = ( 𝒫 𝑋 𝑆 ) → ( ∀ 𝑗𝑆 𝑘𝑗 ↔ ∀ 𝑗𝑆 ( 𝒫 𝑋 𝑆 ) ⊆ 𝑗 ) )
8 7 elrab ( ( 𝒫 𝑋 𝑆 ) ∈ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } ↔ ( ( 𝒫 𝑋 𝑆 ) ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗𝑆 ( 𝒫 𝑋 𝑆 ) ⊆ 𝑗 ) )
9 5 8 mpbiran2 ( ( 𝒫 𝑋 𝑆 ) ∈ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } ↔ ( 𝒫 𝑋 𝑆 ) ∈ ( TopOn ‘ 𝑋 ) )
10 1 9 sylibr ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 𝑆 ) ∈ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } )
11 elssuni ( ( 𝒫 𝑋 𝑆 ) ∈ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } → ( 𝒫 𝑋 𝑆 ) ⊆ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } )
12 10 11 syl ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 𝑆 ) ⊆ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } )
13 toponuni ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝑘 )
14 eqimss2 ( 𝑋 = 𝑘 𝑘𝑋 )
15 13 14 syl ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → 𝑘𝑋 )
16 sspwuni ( 𝑘 ⊆ 𝒫 𝑋 𝑘𝑋 )
17 15 16 sylibr ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → 𝑘 ⊆ 𝒫 𝑋 )
18 17 3ad2ant2 ( ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗𝑆 𝑘𝑗 ) → 𝑘 ⊆ 𝒫 𝑋 )
19 simp3 ( ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗𝑆 𝑘𝑗 ) → ∀ 𝑗𝑆 𝑘𝑗 )
20 ssint ( 𝑘 𝑆 ↔ ∀ 𝑗𝑆 𝑘𝑗 )
21 19 20 sylibr ( ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗𝑆 𝑘𝑗 ) → 𝑘 𝑆 )
22 18 21 ssind ( ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗𝑆 𝑘𝑗 ) → 𝑘 ⊆ ( 𝒫 𝑋 𝑆 ) )
23 velpw ( 𝑘 ∈ 𝒫 ( 𝒫 𝑋 𝑆 ) ↔ 𝑘 ⊆ ( 𝒫 𝑋 𝑆 ) )
24 22 23 sylibr ( ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗𝑆 𝑘𝑗 ) → 𝑘 ∈ 𝒫 ( 𝒫 𝑋 𝑆 ) )
25 24 rabssdv ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } ⊆ 𝒫 ( 𝒫 𝑋 𝑆 ) )
26 sspwuni ( { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } ⊆ 𝒫 ( 𝒫 𝑋 𝑆 ) ↔ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } ⊆ ( 𝒫 𝑋 𝑆 ) )
27 25 26 sylib ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } ⊆ ( 𝒫 𝑋 𝑆 ) )
28 12 27 eqssd ( ( 𝑋𝑉𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝑋 𝑆 ) = { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗𝑆 𝑘𝑗 } )