Step |
Hyp |
Ref |
Expression |
1 |
|
topontop |
⊢ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → 𝑘 ∈ Top ) |
2 |
1
|
ad2antrl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 ) ) → 𝑘 ∈ Top ) |
3 |
|
toponmax |
⊢ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝑘 ) |
4 |
3
|
ad2antrl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 ) ) → 𝑋 ∈ 𝑘 ) |
5 |
4
|
snssd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 ) ) → { 𝑋 } ⊆ 𝑘 ) |
6 |
|
simprr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 ) ) → ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 ) |
7 |
|
unissb |
⊢ ( ∪ 𝑆 ⊆ 𝑘 ↔ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 ) |
8 |
6 7
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 ) ) → ∪ 𝑆 ⊆ 𝑘 ) |
9 |
5 8
|
unssd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 ) ) → ( { 𝑋 } ∪ ∪ 𝑆 ) ⊆ 𝑘 ) |
10 |
|
tgfiss |
⊢ ( ( 𝑘 ∈ Top ∧ ( { 𝑋 } ∪ ∪ 𝑆 ) ⊆ 𝑘 ) → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ⊆ 𝑘 ) |
11 |
2 9 10
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 ) ) → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ⊆ 𝑘 ) |
12 |
11
|
expr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ) → ( ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ⊆ 𝑘 ) ) |
13 |
12
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ∀ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ( ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ⊆ 𝑘 ) ) |
14 |
|
ssintrab |
⊢ ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ⊆ ∩ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 } ↔ ∀ 𝑘 ∈ ( TopOn ‘ 𝑋 ) ( ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ⊆ 𝑘 ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ⊆ ∩ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 } ) |
16 |
|
fibas |
⊢ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ∈ TopBases |
17 |
|
tgtopon |
⊢ ( ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ∈ TopBases → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ∈ ( TopOn ‘ ∪ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ) |
18 |
16 17
|
ax-mp |
⊢ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ∈ ( TopOn ‘ ∪ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) |
19 |
|
uniun |
⊢ ∪ ( { 𝑋 } ∪ ∪ 𝑆 ) = ( ∪ { 𝑋 } ∪ ∪ ∪ 𝑆 ) |
20 |
|
unisng |
⊢ ( 𝑋 ∈ 𝑉 → ∪ { 𝑋 } = 𝑋 ) |
21 |
20
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ∪ { 𝑋 } = 𝑋 ) |
22 |
21
|
uneq1d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( ∪ { 𝑋 } ∪ ∪ ∪ 𝑆 ) = ( 𝑋 ∪ ∪ ∪ 𝑆 ) ) |
23 |
19 22
|
eqtr2id |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝑋 ∪ ∪ ∪ 𝑆 ) = ∪ ( { 𝑋 } ∪ ∪ 𝑆 ) ) |
24 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) |
25 |
|
toponuni |
⊢ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝑘 ) |
26 |
|
eqimss2 |
⊢ ( 𝑋 = ∪ 𝑘 → ∪ 𝑘 ⊆ 𝑋 ) |
27 |
25 26
|
syl |
⊢ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → ∪ 𝑘 ⊆ 𝑋 ) |
28 |
|
sspwuni |
⊢ ( 𝑘 ⊆ 𝒫 𝑋 ↔ ∪ 𝑘 ⊆ 𝑋 ) |
29 |
27 28
|
sylibr |
⊢ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → 𝑘 ⊆ 𝒫 𝑋 ) |
30 |
|
velpw |
⊢ ( 𝑘 ∈ 𝒫 𝒫 𝑋 ↔ 𝑘 ⊆ 𝒫 𝑋 ) |
31 |
29 30
|
sylibr |
⊢ ( 𝑘 ∈ ( TopOn ‘ 𝑋 ) → 𝑘 ∈ 𝒫 𝒫 𝑋 ) |
32 |
31
|
ssriv |
⊢ ( TopOn ‘ 𝑋 ) ⊆ 𝒫 𝒫 𝑋 |
33 |
24 32
|
sstrdi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → 𝑆 ⊆ 𝒫 𝒫 𝑋 ) |
34 |
|
sspwuni |
⊢ ( 𝑆 ⊆ 𝒫 𝒫 𝑋 ↔ ∪ 𝑆 ⊆ 𝒫 𝑋 ) |
35 |
33 34
|
sylib |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ∪ 𝑆 ⊆ 𝒫 𝑋 ) |
36 |
|
sspwuni |
⊢ ( ∪ 𝑆 ⊆ 𝒫 𝑋 ↔ ∪ ∪ 𝑆 ⊆ 𝑋 ) |
37 |
35 36
|
sylib |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ∪ ∪ 𝑆 ⊆ 𝑋 ) |
38 |
|
ssequn2 |
⊢ ( ∪ ∪ 𝑆 ⊆ 𝑋 ↔ ( 𝑋 ∪ ∪ ∪ 𝑆 ) = 𝑋 ) |
39 |
37 38
|
sylib |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( 𝑋 ∪ ∪ ∪ 𝑆 ) = 𝑋 ) |
40 |
|
snex |
⊢ { 𝑋 } ∈ V |
41 |
|
fvex |
⊢ ( TopOn ‘ 𝑋 ) ∈ V |
42 |
41
|
ssex |
⊢ ( 𝑆 ⊆ ( TopOn ‘ 𝑋 ) → 𝑆 ∈ V ) |
43 |
42
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → 𝑆 ∈ V ) |
44 |
43
|
uniexd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ∪ 𝑆 ∈ V ) |
45 |
|
unexg |
⊢ ( ( { 𝑋 } ∈ V ∧ ∪ 𝑆 ∈ V ) → ( { 𝑋 } ∪ ∪ 𝑆 ) ∈ V ) |
46 |
40 44 45
|
sylancr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( { 𝑋 } ∪ ∪ 𝑆 ) ∈ V ) |
47 |
|
fiuni |
⊢ ( ( { 𝑋 } ∪ ∪ 𝑆 ) ∈ V → ∪ ( { 𝑋 } ∪ ∪ 𝑆 ) = ∪ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) |
48 |
46 47
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ∪ ( { 𝑋 } ∪ ∪ 𝑆 ) = ∪ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) |
49 |
23 39 48
|
3eqtr3d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → 𝑋 = ∪ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) |
50 |
49
|
fveq2d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ∪ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ) |
51 |
18 50
|
eleqtrrid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ∈ ( TopOn ‘ 𝑋 ) ) |
52 |
|
elssuni |
⊢ ( 𝑗 ∈ 𝑆 → 𝑗 ⊆ ∪ 𝑆 ) |
53 |
|
ssun2 |
⊢ ∪ 𝑆 ⊆ ( { 𝑋 } ∪ ∪ 𝑆 ) |
54 |
52 53
|
sstrdi |
⊢ ( 𝑗 ∈ 𝑆 → 𝑗 ⊆ ( { 𝑋 } ∪ ∪ 𝑆 ) ) |
55 |
|
ssfii |
⊢ ( ( { 𝑋 } ∪ ∪ 𝑆 ) ∈ V → ( { 𝑋 } ∪ ∪ 𝑆 ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) |
56 |
46 55
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( { 𝑋 } ∪ ∪ 𝑆 ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) |
57 |
54 56
|
sylan9ssr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑗 ∈ 𝑆 ) → 𝑗 ⊆ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) |
58 |
|
bastg |
⊢ ( ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ∈ TopBases → ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ) |
59 |
16 58
|
ax-mp |
⊢ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) |
60 |
57 59
|
sstrdi |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) ∧ 𝑗 ∈ 𝑆 ) → 𝑗 ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ) |
61 |
60
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ) |
62 |
|
sseq2 |
⊢ ( 𝑘 = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) → ( 𝑗 ⊆ 𝑘 ↔ 𝑗 ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ) ) |
63 |
62
|
ralbidv |
⊢ ( 𝑘 = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) → ( ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 ↔ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ) ) |
64 |
63
|
elrab |
⊢ ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ∈ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 } ↔ ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ∈ ( TopOn ‘ 𝑋 ) ∧ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ) ) |
65 |
51 61 64
|
sylanbrc |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ∈ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 } ) |
66 |
|
intss1 |
⊢ ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ∈ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 } → ∩ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 } ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ) |
67 |
65 66
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ∩ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 } ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) ) |
68 |
15 67
|
eqssd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ ( TopOn ‘ 𝑋 ) ) → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ∪ 𝑆 ) ) ) = ∩ { 𝑘 ∈ ( TopOn ‘ 𝑋 ) ∣ ∀ 𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 } ) |