| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topontop | ⊢ ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  →  𝑘  ∈  Top ) | 
						
							| 2 | 1 | ad2antrl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 ) )  →  𝑘  ∈  Top ) | 
						
							| 3 |  | toponmax | ⊢ ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  ∈  𝑘 ) | 
						
							| 4 | 3 | ad2antrl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 ) )  →  𝑋  ∈  𝑘 ) | 
						
							| 5 | 4 | snssd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 ) )  →  { 𝑋 }  ⊆  𝑘 ) | 
						
							| 6 |  | simprr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 ) )  →  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 ) | 
						
							| 7 |  | unissb | ⊢ ( ∪  𝑆  ⊆  𝑘  ↔  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 ) | 
						
							| 8 | 6 7 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 ) )  →  ∪  𝑆  ⊆  𝑘 ) | 
						
							| 9 | 5 8 | unssd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 ) )  →  ( { 𝑋 }  ∪  ∪  𝑆 )  ⊆  𝑘 ) | 
						
							| 10 |  | tgfiss | ⊢ ( ( 𝑘  ∈  Top  ∧  ( { 𝑋 }  ∪  ∪  𝑆 )  ⊆  𝑘 )  →  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ⊆  𝑘 ) | 
						
							| 11 | 2 9 10 | syl2anc | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 ) )  →  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ⊆  𝑘 ) | 
						
							| 12 | 11 | expr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  𝑘  ∈  ( TopOn ‘ 𝑋 ) )  →  ( ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘  →  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ⊆  𝑘 ) ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ∀ 𝑘  ∈  ( TopOn ‘ 𝑋 ) ( ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘  →  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ⊆  𝑘 ) ) | 
						
							| 14 |  | ssintrab | ⊢ ( ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ⊆  ∩  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 }  ↔  ∀ 𝑘  ∈  ( TopOn ‘ 𝑋 ) ( ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘  →  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ⊆  𝑘 ) ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ⊆  ∩  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 } ) | 
						
							| 16 |  | fibas | ⊢ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) )  ∈  TopBases | 
						
							| 17 |  | tgtopon | ⊢ ( ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) )  ∈  TopBases  →  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ∈  ( TopOn ‘ ∪  ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ∈  ( TopOn ‘ ∪  ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) | 
						
							| 19 |  | uniun | ⊢ ∪  ( { 𝑋 }  ∪  ∪  𝑆 )  =  ( ∪  { 𝑋 }  ∪  ∪  ∪  𝑆 ) | 
						
							| 20 |  | unisng | ⊢ ( 𝑋  ∈  𝑉  →  ∪  { 𝑋 }  =  𝑋 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ∪  { 𝑋 }  =  𝑋 ) | 
						
							| 22 | 21 | uneq1d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( ∪  { 𝑋 }  ∪  ∪  ∪  𝑆 )  =  ( 𝑋  ∪  ∪  ∪  𝑆 ) ) | 
						
							| 23 | 19 22 | eqtr2id | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( 𝑋  ∪  ∪  ∪  𝑆 )  =  ∪  ( { 𝑋 }  ∪  ∪  𝑆 ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  𝑆  ⊆  ( TopOn ‘ 𝑋 ) ) | 
						
							| 25 |  | toponuni | ⊢ ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝑘 ) | 
						
							| 26 |  | eqimss2 | ⊢ ( 𝑋  =  ∪  𝑘  →  ∪  𝑘  ⊆  𝑋 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  →  ∪  𝑘  ⊆  𝑋 ) | 
						
							| 28 |  | sspwuni | ⊢ ( 𝑘  ⊆  𝒫  𝑋  ↔  ∪  𝑘  ⊆  𝑋 ) | 
						
							| 29 | 27 28 | sylibr | ⊢ ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  →  𝑘  ⊆  𝒫  𝑋 ) | 
						
							| 30 |  | velpw | ⊢ ( 𝑘  ∈  𝒫  𝒫  𝑋  ↔  𝑘  ⊆  𝒫  𝑋 ) | 
						
							| 31 | 29 30 | sylibr | ⊢ ( 𝑘  ∈  ( TopOn ‘ 𝑋 )  →  𝑘  ∈  𝒫  𝒫  𝑋 ) | 
						
							| 32 | 31 | ssriv | ⊢ ( TopOn ‘ 𝑋 )  ⊆  𝒫  𝒫  𝑋 | 
						
							| 33 | 24 32 | sstrdi | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  𝑆  ⊆  𝒫  𝒫  𝑋 ) | 
						
							| 34 |  | sspwuni | ⊢ ( 𝑆  ⊆  𝒫  𝒫  𝑋  ↔  ∪  𝑆  ⊆  𝒫  𝑋 ) | 
						
							| 35 | 33 34 | sylib | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ∪  𝑆  ⊆  𝒫  𝑋 ) | 
						
							| 36 |  | sspwuni | ⊢ ( ∪  𝑆  ⊆  𝒫  𝑋  ↔  ∪  ∪  𝑆  ⊆  𝑋 ) | 
						
							| 37 | 35 36 | sylib | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ∪  ∪  𝑆  ⊆  𝑋 ) | 
						
							| 38 |  | ssequn2 | ⊢ ( ∪  ∪  𝑆  ⊆  𝑋  ↔  ( 𝑋  ∪  ∪  ∪  𝑆 )  =  𝑋 ) | 
						
							| 39 | 37 38 | sylib | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( 𝑋  ∪  ∪  ∪  𝑆 )  =  𝑋 ) | 
						
							| 40 |  | snex | ⊢ { 𝑋 }  ∈  V | 
						
							| 41 |  | fvex | ⊢ ( TopOn ‘ 𝑋 )  ∈  V | 
						
							| 42 | 41 | ssex | ⊢ ( 𝑆  ⊆  ( TopOn ‘ 𝑋 )  →  𝑆  ∈  V ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  𝑆  ∈  V ) | 
						
							| 44 | 43 | uniexd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ∪  𝑆  ∈  V ) | 
						
							| 45 |  | unexg | ⊢ ( ( { 𝑋 }  ∈  V  ∧  ∪  𝑆  ∈  V )  →  ( { 𝑋 }  ∪  ∪  𝑆 )  ∈  V ) | 
						
							| 46 | 40 44 45 | sylancr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( { 𝑋 }  ∪  ∪  𝑆 )  ∈  V ) | 
						
							| 47 |  | fiuni | ⊢ ( ( { 𝑋 }  ∪  ∪  𝑆 )  ∈  V  →  ∪  ( { 𝑋 }  ∪  ∪  𝑆 )  =  ∪  ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ∪  ( { 𝑋 }  ∪  ∪  𝑆 )  =  ∪  ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) | 
						
							| 49 | 23 39 48 | 3eqtr3d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  𝑋  =  ∪  ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( TopOn ‘ 𝑋 )  =  ( TopOn ‘ ∪  ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) ) | 
						
							| 51 | 18 50 | eleqtrrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 52 |  | elssuni | ⊢ ( 𝑗  ∈  𝑆  →  𝑗  ⊆  ∪  𝑆 ) | 
						
							| 53 |  | ssun2 | ⊢ ∪  𝑆  ⊆  ( { 𝑋 }  ∪  ∪  𝑆 ) | 
						
							| 54 | 52 53 | sstrdi | ⊢ ( 𝑗  ∈  𝑆  →  𝑗  ⊆  ( { 𝑋 }  ∪  ∪  𝑆 ) ) | 
						
							| 55 |  | ssfii | ⊢ ( ( { 𝑋 }  ∪  ∪  𝑆 )  ∈  V  →  ( { 𝑋 }  ∪  ∪  𝑆 )  ⊆  ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) | 
						
							| 56 | 46 55 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( { 𝑋 }  ∪  ∪  𝑆 )  ⊆  ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) | 
						
							| 57 | 54 56 | sylan9ssr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  𝑗  ∈  𝑆 )  →  𝑗  ⊆  ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) | 
						
							| 58 |  | bastg | ⊢ ( ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) )  ∈  TopBases  →  ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) )  ⊆  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) ) | 
						
							| 59 | 16 58 | ax-mp | ⊢ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) )  ⊆  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) | 
						
							| 60 | 57 59 | sstrdi | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  ∧  𝑗  ∈  𝑆 )  →  𝑗  ⊆  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) ) | 
						
							| 61 | 60 | ralrimiva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) ) | 
						
							| 62 |  | sseq2 | ⊢ ( 𝑘  =  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  →  ( 𝑗  ⊆  𝑘  ↔  𝑗  ⊆  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) ) ) | 
						
							| 63 | 62 | ralbidv | ⊢ ( 𝑘  =  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  →  ( ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘  ↔  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) ) ) | 
						
							| 64 | 63 | elrab | ⊢ ( ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ∈  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 }  ↔  ( ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ∈  ( TopOn ‘ 𝑋 )  ∧  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) ) ) | 
						
							| 65 | 51 61 64 | sylanbrc | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ∈  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 } ) | 
						
							| 66 |  | intss1 | ⊢ ( ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  ∈  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 }  →  ∩  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 }  ⊆  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) ) | 
						
							| 67 | 65 66 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ∩  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 }  ⊆  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) ) ) | 
						
							| 68 | 15 67 | eqssd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑆  ⊆  ( TopOn ‘ 𝑋 ) )  →  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ∪  𝑆 ) ) )  =  ∩  { 𝑘  ∈  ( TopOn ‘ 𝑋 )  ∣  ∀ 𝑗  ∈  𝑆 𝑗  ⊆  𝑘 } ) |