Step |
Hyp |
Ref |
Expression |
1 |
|
fiss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ( fi ‘ 𝐴 ) ⊆ ( fi ‘ 𝐽 ) ) |
2 |
|
fitop |
⊢ ( 𝐽 ∈ Top → ( fi ‘ 𝐽 ) = 𝐽 ) |
3 |
2
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ( fi ‘ 𝐽 ) = 𝐽 ) |
4 |
1 3
|
sseqtrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ( fi ‘ 𝐴 ) ⊆ 𝐽 ) |
5 |
|
tgss |
⊢ ( ( 𝐽 ∈ Top ∧ ( fi ‘ 𝐴 ) ⊆ 𝐽 ) → ( topGen ‘ ( fi ‘ 𝐴 ) ) ⊆ ( topGen ‘ 𝐽 ) ) |
6 |
4 5
|
syldan |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ( topGen ‘ ( fi ‘ 𝐴 ) ) ⊆ ( topGen ‘ 𝐽 ) ) |
7 |
|
tgtop |
⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 ) |
8 |
7
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ( topGen ‘ 𝐽 ) = 𝐽 ) |
9 |
6 8
|
sseqtrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ( topGen ‘ ( fi ‘ 𝐴 ) ) ⊆ 𝐽 ) |