Step |
Hyp |
Ref |
Expression |
1 |
|
indif1 |
⊢ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) = ( ( 𝐵 ∩ 𝒫 𝑥 ) ∖ { ∅ } ) |
2 |
1
|
unieqi |
⊢ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) = ∪ ( ( 𝐵 ∩ 𝒫 𝑥 ) ∖ { ∅ } ) |
3 |
|
unidif0 |
⊢ ∪ ( ( 𝐵 ∩ 𝒫 𝑥 ) ∖ { ∅ } ) = ∪ ( 𝐵 ∩ 𝒫 𝑥 ) |
4 |
2 3
|
eqtri |
⊢ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) = ∪ ( 𝐵 ∩ 𝒫 𝑥 ) |
5 |
4
|
sseq2i |
⊢ ( 𝑥 ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
6 |
5
|
abbii |
⊢ { 𝑥 ∣ 𝑥 ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) } = { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } |
7 |
|
difexg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ { ∅ } ) ∈ V ) |
8 |
|
tgval |
⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = { 𝑥 ∣ 𝑥 ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) } ) |
9 |
7 8
|
syl |
⊢ ( 𝐵 ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = { 𝑥 ∣ 𝑥 ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) } ) |
10 |
|
tgval |
⊢ ( 𝐵 ∈ V → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ) |
11 |
6 9 10
|
3eqtr4a |
⊢ ( 𝐵 ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = ( topGen ‘ 𝐵 ) ) |
12 |
|
difsnexi |
⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ V → 𝐵 ∈ V ) |
13 |
|
fvprc |
⊢ ( ¬ ( 𝐵 ∖ { ∅ } ) ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = ∅ ) |
14 |
12 13
|
nsyl5 |
⊢ ( ¬ 𝐵 ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = ∅ ) |
15 |
|
fvprc |
⊢ ( ¬ 𝐵 ∈ V → ( topGen ‘ 𝐵 ) = ∅ ) |
16 |
14 15
|
eqtr4d |
⊢ ( ¬ 𝐵 ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = ( topGen ‘ 𝐵 ) ) |
17 |
11 16
|
pm2.61i |
⊢ ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = ( topGen ‘ 𝐵 ) |