| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-topgen | 
							⊢ topGen  =  ( 𝑦  ∈  V  ↦  { 𝑥  ∣  𝑥  ⊆  ∪  ( 𝑦  ∩  𝒫  𝑥 ) } )  | 
						
						
							| 2 | 
							
								
							 | 
							ineq1 | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ∩  𝒫  𝑥 )  =  ( 𝐵  ∩  𝒫  𝑥 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							unieqd | 
							⊢ ( 𝑦  =  𝐵  →  ∪  ( 𝑦  ∩  𝒫  𝑥 )  =  ∪  ( 𝐵  ∩  𝒫  𝑥 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							sseq2d | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝑥  ⊆  ∪  ( 𝑦  ∩  𝒫  𝑥 )  ↔  𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							abbidv | 
							⊢ ( 𝑦  =  𝐵  →  { 𝑥  ∣  𝑥  ⊆  ∪  ( 𝑦  ∩  𝒫  𝑥 ) }  =  { 𝑥  ∣  𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 ) } )  | 
						
						
							| 6 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐵  ∈  𝑉  →  𝐵  ∈  V )  | 
						
						
							| 7 | 
							
								
							 | 
							uniexg | 
							⊢ ( 𝐵  ∈  𝑉  →  ∪  𝐵  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							abssexg | 
							⊢ ( ∪  𝐵  ∈  V  →  { 𝑥  ∣  ( 𝑥  ⊆  ∪  𝐵  ∧  𝑥  ⊆  ∪  𝒫  𝑥 ) }  ∈  V )  | 
						
						
							| 9 | 
							
								
							 | 
							uniin | 
							⊢ ∪  ( 𝐵  ∩  𝒫  𝑥 )  ⊆  ( ∪  𝐵  ∩  ∪  𝒫  𝑥 )  | 
						
						
							| 10 | 
							
								
							 | 
							sstr | 
							⊢ ( ( 𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 )  ∧  ∪  ( 𝐵  ∩  𝒫  𝑥 )  ⊆  ( ∪  𝐵  ∩  ∪  𝒫  𝑥 ) )  →  𝑥  ⊆  ( ∪  𝐵  ∩  ∪  𝒫  𝑥 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							mpan2 | 
							⊢ ( 𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 )  →  𝑥  ⊆  ( ∪  𝐵  ∩  ∪  𝒫  𝑥 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ssin | 
							⊢ ( ( 𝑥  ⊆  ∪  𝐵  ∧  𝑥  ⊆  ∪  𝒫  𝑥 )  ↔  𝑥  ⊆  ( ∪  𝐵  ∩  ∪  𝒫  𝑥 ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sylibr | 
							⊢ ( 𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 )  →  ( 𝑥  ⊆  ∪  𝐵  ∧  𝑥  ⊆  ∪  𝒫  𝑥 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ss2abi | 
							⊢ { 𝑥  ∣  𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 ) }  ⊆  { 𝑥  ∣  ( 𝑥  ⊆  ∪  𝐵  ∧  𝑥  ⊆  ∪  𝒫  𝑥 ) }  | 
						
						
							| 15 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( { 𝑥  ∣  𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 ) }  ⊆  { 𝑥  ∣  ( 𝑥  ⊆  ∪  𝐵  ∧  𝑥  ⊆  ∪  𝒫  𝑥 ) }  ∧  { 𝑥  ∣  ( 𝑥  ⊆  ∪  𝐵  ∧  𝑥  ⊆  ∪  𝒫  𝑥 ) }  ∈  V )  →  { 𝑥  ∣  𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 ) }  ∈  V )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mpan | 
							⊢ ( { 𝑥  ∣  ( 𝑥  ⊆  ∪  𝐵  ∧  𝑥  ⊆  ∪  𝒫  𝑥 ) }  ∈  V  →  { 𝑥  ∣  𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 ) }  ∈  V )  | 
						
						
							| 17 | 
							
								7 8 16
							 | 
							3syl | 
							⊢ ( 𝐵  ∈  𝑉  →  { 𝑥  ∣  𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 ) }  ∈  V )  | 
						
						
							| 18 | 
							
								1 5 6 17
							 | 
							fvmptd3 | 
							⊢ ( 𝐵  ∈  𝑉  →  ( topGen ‘ 𝐵 )  =  { 𝑥  ∣  𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 ) } )  |