| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topontop |
|
| 2 |
1
|
ad2antrl |
|
| 3 |
|
toponmax |
|
| 4 |
3
|
ad2antrl |
|
| 5 |
4
|
snssd |
|
| 6 |
|
simprr |
|
| 7 |
|
unissb |
|
| 8 |
6 7
|
sylibr |
|
| 9 |
5 8
|
unssd |
|
| 10 |
|
tgfiss |
|
| 11 |
2 9 10
|
syl2anc |
|
| 12 |
11
|
expr |
|
| 13 |
12
|
ralrimiva |
|
| 14 |
|
ssintrab |
|
| 15 |
13 14
|
sylibr |
|
| 16 |
|
fibas |
|
| 17 |
|
tgtopon |
|
| 18 |
16 17
|
ax-mp |
|
| 19 |
|
uniun |
|
| 20 |
|
unisng |
|
| 21 |
20
|
adantr |
|
| 22 |
21
|
uneq1d |
|
| 23 |
19 22
|
eqtr2id |
|
| 24 |
|
simpr |
|
| 25 |
|
toponuni |
|
| 26 |
|
eqimss2 |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
sspwuni |
|
| 29 |
27 28
|
sylibr |
|
| 30 |
|
velpw |
|
| 31 |
29 30
|
sylibr |
|
| 32 |
31
|
ssriv |
|
| 33 |
24 32
|
sstrdi |
|
| 34 |
|
sspwuni |
|
| 35 |
33 34
|
sylib |
|
| 36 |
|
sspwuni |
|
| 37 |
35 36
|
sylib |
|
| 38 |
|
ssequn2 |
|
| 39 |
37 38
|
sylib |
|
| 40 |
|
snex |
|
| 41 |
|
fvex |
|
| 42 |
41
|
ssex |
|
| 43 |
42
|
adantl |
|
| 44 |
43
|
uniexd |
|
| 45 |
|
unexg |
|
| 46 |
40 44 45
|
sylancr |
|
| 47 |
|
fiuni |
|
| 48 |
46 47
|
syl |
|
| 49 |
23 39 48
|
3eqtr3d |
|
| 50 |
49
|
fveq2d |
|
| 51 |
18 50
|
eleqtrrid |
|
| 52 |
|
elssuni |
|
| 53 |
|
ssun2 |
|
| 54 |
52 53
|
sstrdi |
|
| 55 |
|
ssfii |
|
| 56 |
46 55
|
syl |
|
| 57 |
54 56
|
sylan9ssr |
|
| 58 |
|
bastg |
|
| 59 |
16 58
|
ax-mp |
|
| 60 |
57 59
|
sstrdi |
|
| 61 |
60
|
ralrimiva |
|
| 62 |
|
sseq2 |
|
| 63 |
62
|
ralbidv |
|
| 64 |
63
|
elrab |
|
| 65 |
51 61 64
|
sylanbrc |
|
| 66 |
|
intss1 |
|
| 67 |
65 66
|
syl |
|
| 68 |
15 67
|
eqssd |
|