Step |
Hyp |
Ref |
Expression |
1 |
|
unitg |
⊢ ( 𝑡 ∈ 𝑆 → ∪ ( topGen ‘ 𝑡 ) = ∪ 𝑡 ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → ∪ ( topGen ‘ 𝑡 ) = ∪ 𝑡 ) |
3 |
|
unieq |
⊢ ( 𝑦 = 𝑡 → ∪ 𝑦 = ∪ 𝑡 ) |
4 |
3
|
eqeq2d |
⊢ ( 𝑦 = 𝑡 → ( 𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑡 ) ) |
5 |
4
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑡 ∈ 𝑆 ) → 𝑋 = ∪ 𝑡 ) |
6 |
5
|
3ad2antl2 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → 𝑋 = ∪ 𝑡 ) |
7 |
2 6
|
eqtr4d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → ∪ ( topGen ‘ 𝑡 ) = 𝑋 ) |
8 |
|
eqimss |
⊢ ( ∪ ( topGen ‘ 𝑡 ) = 𝑋 → ∪ ( topGen ‘ 𝑡 ) ⊆ 𝑋 ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → ∪ ( topGen ‘ 𝑡 ) ⊆ 𝑋 ) |
10 |
|
sspwuni |
⊢ ( ( topGen ‘ 𝑡 ) ⊆ 𝒫 𝑋 ↔ ∪ ( topGen ‘ 𝑡 ) ⊆ 𝑋 ) |
11 |
9 10
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → ( topGen ‘ 𝑡 ) ⊆ 𝒫 𝑋 ) |
12 |
11
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∀ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ⊆ 𝒫 𝑋 ) |
13 |
|
ne0i |
⊢ ( 𝐴 ∈ 𝑆 → 𝑆 ≠ ∅ ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → 𝑆 ≠ ∅ ) |
15 |
|
riinn0 |
⊢ ( ( ∀ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ⊆ 𝒫 𝑋 ∧ 𝑆 ≠ ∅ ) → ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) = ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) |
16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) = ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) |
17 |
|
simp3 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
18 |
|
ssid |
⊢ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐴 ) |
19 |
|
fveq2 |
⊢ ( 𝑡 = 𝐴 → ( topGen ‘ 𝑡 ) = ( topGen ‘ 𝐴 ) ) |
20 |
19
|
sseq1d |
⊢ ( 𝑡 = 𝐴 → ( ( topGen ‘ 𝑡 ) ⊆ ( topGen ‘ 𝐴 ) ↔ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐴 ) ) ) |
21 |
20
|
rspcev |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( topGen ‘ 𝐴 ) ⊆ ( topGen ‘ 𝐴 ) ) → ∃ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ⊆ ( topGen ‘ 𝐴 ) ) |
22 |
17 18 21
|
sylancl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∃ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ⊆ ( topGen ‘ 𝐴 ) ) |
23 |
|
iinss |
⊢ ( ∃ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ⊆ ( topGen ‘ 𝐴 ) → ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ⊆ ( topGen ‘ 𝐴 ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ⊆ ( topGen ‘ 𝐴 ) ) |
25 |
24
|
unissd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∪ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ⊆ ∪ ( topGen ‘ 𝐴 ) ) |
26 |
|
unitg |
⊢ ( 𝐴 ∈ 𝑆 → ∪ ( topGen ‘ 𝐴 ) = ∪ 𝐴 ) |
27 |
26
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∪ ( topGen ‘ 𝐴 ) = ∪ 𝐴 ) |
28 |
25 27
|
sseqtrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∪ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ⊆ ∪ 𝐴 ) |
29 |
|
unieq |
⊢ ( 𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴 ) |
30 |
29
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝐴 ) ) |
31 |
30
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → 𝑋 = ∪ 𝐴 ) |
32 |
31
|
3adant1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → 𝑋 = ∪ 𝐴 ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → 𝑋 = ∪ 𝐴 ) |
34 |
33 6
|
eqtr3d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → ∪ 𝐴 = ∪ 𝑡 ) |
35 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → 𝑡 ∈ 𝑆 ) |
36 |
|
ssid |
⊢ 𝑡 ⊆ 𝑡 |
37 |
|
eltg3i |
⊢ ( ( 𝑡 ∈ 𝑆 ∧ 𝑡 ⊆ 𝑡 ) → ∪ 𝑡 ∈ ( topGen ‘ 𝑡 ) ) |
38 |
35 36 37
|
sylancl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → ∪ 𝑡 ∈ ( topGen ‘ 𝑡 ) ) |
39 |
34 38
|
eqeltrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → ∪ 𝐴 ∈ ( topGen ‘ 𝑡 ) ) |
40 |
39
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∀ 𝑡 ∈ 𝑆 ∪ 𝐴 ∈ ( topGen ‘ 𝑡 ) ) |
41 |
|
uniexg |
⊢ ( 𝐴 ∈ 𝑆 → ∪ 𝐴 ∈ V ) |
42 |
41
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∪ 𝐴 ∈ V ) |
43 |
|
eliin |
⊢ ( ∪ 𝐴 ∈ V → ( ∪ 𝐴 ∈ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝑆 ∪ 𝐴 ∈ ( topGen ‘ 𝑡 ) ) ) |
44 |
42 43
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ( ∪ 𝐴 ∈ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝑆 ∪ 𝐴 ∈ ( topGen ‘ 𝑡 ) ) ) |
45 |
40 44
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∪ 𝐴 ∈ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) |
46 |
|
elssuni |
⊢ ( ∪ 𝐴 ∈ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) → ∪ 𝐴 ⊆ ∪ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) |
47 |
45 46
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∪ 𝐴 ⊆ ∪ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) |
48 |
28 47
|
eqssd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∪ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) = ∪ 𝐴 ) |
49 |
|
eqid |
⊢ ∪ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) = ∪ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) |
50 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
51 |
49 50
|
isfne4 |
⊢ ( ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) Fne 𝐴 ↔ ( ∪ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) = ∪ 𝐴 ∧ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ⊆ ( topGen ‘ 𝐴 ) ) ) |
52 |
48 24 51
|
sylanbrc |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) Fne 𝐴 ) |
53 |
16 52
|
eqbrtrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝐴 ) |