| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitg | ⊢ ( 𝑡  ∈  𝑆  →  ∪  ( topGen ‘ 𝑡 )  =  ∪  𝑡 ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  ∧  𝑡  ∈  𝑆 )  →  ∪  ( topGen ‘ 𝑡 )  =  ∪  𝑡 ) | 
						
							| 3 |  | unieq | ⊢ ( 𝑦  =  𝑡  →  ∪  𝑦  =  ∪  𝑡 ) | 
						
							| 4 | 3 | eqeq2d | ⊢ ( 𝑦  =  𝑡  →  ( 𝑋  =  ∪  𝑦  ↔  𝑋  =  ∪  𝑡 ) ) | 
						
							| 5 | 4 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝑡  ∈  𝑆 )  →  𝑋  =  ∪  𝑡 ) | 
						
							| 6 | 5 | 3ad2antl2 | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  ∧  𝑡  ∈  𝑆 )  →  𝑋  =  ∪  𝑡 ) | 
						
							| 7 | 2 6 | eqtr4d | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  ∧  𝑡  ∈  𝑆 )  →  ∪  ( topGen ‘ 𝑡 )  =  𝑋 ) | 
						
							| 8 |  | eqimss | ⊢ ( ∪  ( topGen ‘ 𝑡 )  =  𝑋  →  ∪  ( topGen ‘ 𝑡 )  ⊆  𝑋 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  ∧  𝑡  ∈  𝑆 )  →  ∪  ( topGen ‘ 𝑡 )  ⊆  𝑋 ) | 
						
							| 10 |  | sspwuni | ⊢ ( ( topGen ‘ 𝑡 )  ⊆  𝒫  𝑋  ↔  ∪  ( topGen ‘ 𝑡 )  ⊆  𝑋 ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  ∧  𝑡  ∈  𝑆 )  →  ( topGen ‘ 𝑡 )  ⊆  𝒫  𝑋 ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∀ 𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ⊆  𝒫  𝑋 ) | 
						
							| 13 |  | ne0i | ⊢ ( 𝐴  ∈  𝑆  →  𝑆  ≠  ∅ ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝑆  ≠  ∅ ) | 
						
							| 15 |  | riinn0 | ⊢ ( ( ∀ 𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ⊆  𝒫  𝑋  ∧  𝑆  ≠  ∅ )  →  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  =  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) | 
						
							| 16 | 12 14 15 | syl2anc | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  =  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) | 
						
							| 17 |  | simp3 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝐴  ∈  𝑆 ) | 
						
							| 18 |  | ssid | ⊢ ( topGen ‘ 𝐴 )  ⊆  ( topGen ‘ 𝐴 ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑡  =  𝐴  →  ( topGen ‘ 𝑡 )  =  ( topGen ‘ 𝐴 ) ) | 
						
							| 20 | 19 | sseq1d | ⊢ ( 𝑡  =  𝐴  →  ( ( topGen ‘ 𝑡 )  ⊆  ( topGen ‘ 𝐴 )  ↔  ( topGen ‘ 𝐴 )  ⊆  ( topGen ‘ 𝐴 ) ) ) | 
						
							| 21 | 20 | rspcev | ⊢ ( ( 𝐴  ∈  𝑆  ∧  ( topGen ‘ 𝐴 )  ⊆  ( topGen ‘ 𝐴 ) )  →  ∃ 𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ⊆  ( topGen ‘ 𝐴 ) ) | 
						
							| 22 | 17 18 21 | sylancl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∃ 𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ⊆  ( topGen ‘ 𝐴 ) ) | 
						
							| 23 |  | iinss | ⊢ ( ∃ 𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ⊆  ( topGen ‘ 𝐴 )  →  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ⊆  ( topGen ‘ 𝐴 ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ⊆  ( topGen ‘ 𝐴 ) ) | 
						
							| 25 | 24 | unissd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ⊆  ∪  ( topGen ‘ 𝐴 ) ) | 
						
							| 26 |  | unitg | ⊢ ( 𝐴  ∈  𝑆  →  ∪  ( topGen ‘ 𝐴 )  =  ∪  𝐴 ) | 
						
							| 27 | 26 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  ( topGen ‘ 𝐴 )  =  ∪  𝐴 ) | 
						
							| 28 | 25 27 | sseqtrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ⊆  ∪  𝐴 ) | 
						
							| 29 |  | unieq | ⊢ ( 𝑦  =  𝐴  →  ∪  𝑦  =  ∪  𝐴 ) | 
						
							| 30 | 29 | eqeq2d | ⊢ ( 𝑦  =  𝐴  →  ( 𝑋  =  ∪  𝑦  ↔  𝑋  =  ∪  𝐴 ) ) | 
						
							| 31 | 30 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝑋  =  ∪  𝐴 ) | 
						
							| 32 | 31 | 3adant1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝑋  =  ∪  𝐴 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  ∧  𝑡  ∈  𝑆 )  →  𝑋  =  ∪  𝐴 ) | 
						
							| 34 | 33 6 | eqtr3d | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  ∧  𝑡  ∈  𝑆 )  →  ∪  𝐴  =  ∪  𝑡 ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  ∧  𝑡  ∈  𝑆 )  →  𝑡  ∈  𝑆 ) | 
						
							| 36 |  | ssid | ⊢ 𝑡  ⊆  𝑡 | 
						
							| 37 |  | eltg3i | ⊢ ( ( 𝑡  ∈  𝑆  ∧  𝑡  ⊆  𝑡 )  →  ∪  𝑡  ∈  ( topGen ‘ 𝑡 ) ) | 
						
							| 38 | 35 36 37 | sylancl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  ∧  𝑡  ∈  𝑆 )  →  ∪  𝑡  ∈  ( topGen ‘ 𝑡 ) ) | 
						
							| 39 | 34 38 | eqeltrd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  ∧  𝑡  ∈  𝑆 )  →  ∪  𝐴  ∈  ( topGen ‘ 𝑡 ) ) | 
						
							| 40 | 39 | ralrimiva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∀ 𝑡  ∈  𝑆 ∪  𝐴  ∈  ( topGen ‘ 𝑡 ) ) | 
						
							| 41 |  | uniexg | ⊢ ( 𝐴  ∈  𝑆  →  ∪  𝐴  ∈  V ) | 
						
							| 42 | 41 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  𝐴  ∈  V ) | 
						
							| 43 |  | eliin | ⊢ ( ∪  𝐴  ∈  V  →  ( ∪  𝐴  ∈  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  𝑆 ∪  𝐴  ∈  ( topGen ‘ 𝑡 ) ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ( ∪  𝐴  ∈  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  𝑆 ∪  𝐴  ∈  ( topGen ‘ 𝑡 ) ) ) | 
						
							| 45 | 40 44 | mpbird | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  𝐴  ∈  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) | 
						
							| 46 |  | elssuni | ⊢ ( ∪  𝐴  ∈  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  →  ∪  𝐴  ⊆  ∪  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  𝐴  ⊆  ∪  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) | 
						
							| 48 | 28 47 | eqssd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  =  ∪  𝐴 ) | 
						
							| 49 |  | eqid | ⊢ ∪  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  =  ∪  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) | 
						
							| 50 |  | eqid | ⊢ ∪  𝐴  =  ∪  𝐴 | 
						
							| 51 | 49 50 | isfne4 | ⊢ ( ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) Fne 𝐴  ↔  ( ∪  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  =  ∪  𝐴  ∧  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ⊆  ( topGen ‘ 𝐴 ) ) ) | 
						
							| 52 | 48 24 51 | sylanbrc | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) Fne 𝐴 ) | 
						
							| 53 | 16 52 | eqbrtrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝐴 ) |