| Step |
Hyp |
Ref |
Expression |
| 1 |
|
riin0 |
⊢ ( 𝑆 = ∅ → ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) = 𝒫 𝑋 ) |
| 2 |
1
|
unieqd |
⊢ ( 𝑆 = ∅ → ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) = ∪ 𝒫 𝑋 ) |
| 3 |
|
unipw |
⊢ ∪ 𝒫 𝑋 = 𝑋 |
| 4 |
2 3
|
eqtr2di |
⊢ ( 𝑆 = ∅ → 𝑋 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) |
| 5 |
4
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( 𝑆 = ∅ → 𝑋 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) ) |
| 6 |
|
n0 |
⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑆 ) |
| 7 |
|
unieq |
⊢ ( 𝑦 = 𝑥 → ∪ 𝑦 = ∪ 𝑥 ) |
| 8 |
7
|
eqeq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑥 ) ) |
| 9 |
8
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → 𝑋 = ∪ 𝑥 ) |
| 10 |
9
|
3adant1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → 𝑋 = ∪ 𝑥 ) |
| 11 |
|
fnemeet1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥 ) |
| 12 |
|
eqid |
⊢ ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) |
| 13 |
|
eqid |
⊢ ∪ 𝑥 = ∪ 𝑥 |
| 14 |
12 13
|
fnebas |
⊢ ( ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥 → ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) = ∪ 𝑥 ) |
| 15 |
11 14
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) = ∪ 𝑥 ) |
| 16 |
10 15
|
eqtr4d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → 𝑋 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) |
| 17 |
16
|
3expia |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( 𝑥 ∈ 𝑆 → 𝑋 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) ) |
| 18 |
17
|
exlimdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( ∃ 𝑥 𝑥 ∈ 𝑆 → 𝑋 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) ) |
| 19 |
6 18
|
biimtrid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( 𝑆 ≠ ∅ → 𝑋 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) ) |
| 20 |
5 19
|
pm2.61dne |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → 𝑋 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) → 𝑋 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) |
| 22 |
|
eqid |
⊢ ∪ 𝑇 = ∪ 𝑇 |
| 23 |
22 12
|
fnebas |
⊢ ( 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) → ∪ 𝑇 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) |
| 24 |
23
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) → ∪ 𝑇 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) |
| 25 |
21 24
|
eqtr4d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) → 𝑋 = ∪ 𝑇 ) |
| 26 |
25
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) → 𝑋 = ∪ 𝑇 ) ) |
| 27 |
|
fnetr |
⊢ ( ( 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ∧ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥 ) → 𝑇 Fne 𝑥 ) |
| 28 |
27
|
expcom |
⊢ ( ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥 → ( 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) → 𝑇 Fne 𝑥 ) ) |
| 29 |
11 28
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) → 𝑇 Fne 𝑥 ) ) |
| 30 |
29
|
3expa |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) → 𝑇 Fne 𝑥 ) ) |
| 31 |
30
|
ralrimdva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) → ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) |
| 32 |
26 31
|
jcad |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) → ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) ) |
| 33 |
|
simprl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → 𝑋 = ∪ 𝑇 ) |
| 34 |
20
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → 𝑋 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) |
| 35 |
33 34
|
eqtr3d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → ∪ 𝑇 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) |
| 36 |
|
eqimss2 |
⊢ ( 𝑋 = ∪ 𝑇 → ∪ 𝑇 ⊆ 𝑋 ) |
| 37 |
36
|
ad2antrl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → ∪ 𝑇 ⊆ 𝑋 ) |
| 38 |
|
sspwuni |
⊢ ( 𝑇 ⊆ 𝒫 𝑋 ↔ ∪ 𝑇 ⊆ 𝑋 ) |
| 39 |
37 38
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → 𝑇 ⊆ 𝒫 𝑋 ) |
| 40 |
|
breq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑇 Fne 𝑥 ↔ 𝑇 Fne 𝑡 ) ) |
| 41 |
40
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ↔ ∀ 𝑡 ∈ 𝑆 𝑇 Fne 𝑡 ) |
| 42 |
|
fnetg |
⊢ ( 𝑇 Fne 𝑡 → 𝑇 ⊆ ( topGen ‘ 𝑡 ) ) |
| 43 |
42
|
ralimi |
⊢ ( ∀ 𝑡 ∈ 𝑆 𝑇 Fne 𝑡 → ∀ 𝑡 ∈ 𝑆 𝑇 ⊆ ( topGen ‘ 𝑡 ) ) |
| 44 |
41 43
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 → ∀ 𝑡 ∈ 𝑆 𝑇 ⊆ ( topGen ‘ 𝑡 ) ) |
| 45 |
44
|
ad2antll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → ∀ 𝑡 ∈ 𝑆 𝑇 ⊆ ( topGen ‘ 𝑡 ) ) |
| 46 |
|
ssiin |
⊢ ( 𝑇 ⊆ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝑆 𝑇 ⊆ ( topGen ‘ 𝑡 ) ) |
| 47 |
45 46
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → 𝑇 ⊆ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) |
| 48 |
39 47
|
ssind |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → 𝑇 ⊆ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) |
| 49 |
|
pwexg |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ V ) |
| 50 |
|
inex1g |
⊢ ( 𝒫 𝑋 ∈ V → ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ∈ V ) |
| 51 |
49 50
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ∈ V ) |
| 52 |
51
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ∈ V ) |
| 53 |
|
bastg |
⊢ ( ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ∈ V → ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ⊆ ( topGen ‘ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) ) |
| 54 |
52 53
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ⊆ ( topGen ‘ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) ) |
| 55 |
48 54
|
sstrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → 𝑇 ⊆ ( topGen ‘ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) ) |
| 56 |
22 12
|
isfne4 |
⊢ ( 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ↔ ( ∪ 𝑇 = ∪ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ∧ 𝑇 ⊆ ( topGen ‘ ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) ) ) |
| 57 |
35 55 56
|
sylanbrc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) → 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) |
| 58 |
57
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) → 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ) ) |
| 59 |
32 58
|
impbid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( 𝑇 Fne ( 𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 ( topGen ‘ 𝑡 ) ) ↔ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑇 Fne 𝑥 ) ) ) |