Metamath Proof Explorer


Theorem fnemeet2

Description: The meet of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 6-Oct-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion fnemeet2 ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) → ( 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ↔ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 riin0 ( 𝑆 = ∅ → ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) = 𝒫 𝑋 )
2 1 unieqd ( 𝑆 = ∅ → ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) = 𝒫 𝑋 )
3 unipw 𝒫 𝑋 = 𝑋
4 2 3 eqtr2di ( 𝑆 = ∅ → 𝑋 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) )
5 4 a1i ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) → ( 𝑆 = ∅ → 𝑋 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) )
6 n0 ( 𝑆 ≠ ∅ ↔ ∃ 𝑥 𝑥𝑆 )
7 unieq ( 𝑦 = 𝑥 𝑦 = 𝑥 )
8 7 eqeq2d ( 𝑦 = 𝑥 → ( 𝑋 = 𝑦𝑋 = 𝑥 ) )
9 8 rspccva ( ( ∀ 𝑦𝑆 𝑋 = 𝑦𝑥𝑆 ) → 𝑋 = 𝑥 )
10 9 3adant1 ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦𝑥𝑆 ) → 𝑋 = 𝑥 )
11 fnemeet1 ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦𝑥𝑆 ) → ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥 )
12 eqid ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) )
13 eqid 𝑥 = 𝑥
14 12 13 fnebas ( ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥 ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) = 𝑥 )
15 11 14 syl ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦𝑥𝑆 ) → ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) = 𝑥 )
16 10 15 eqtr4d ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦𝑥𝑆 ) → 𝑋 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) )
17 16 3expia ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) → ( 𝑥𝑆𝑋 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) )
18 17 exlimdv ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) → ( ∃ 𝑥 𝑥𝑆𝑋 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) )
19 6 18 syl5bi ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) → ( 𝑆 ≠ ∅ → 𝑋 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) )
20 5 19 pm2.61dne ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) → 𝑋 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) )
21 20 adantr ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) → 𝑋 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) )
22 eqid 𝑇 = 𝑇
23 22 12 fnebas ( 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) → 𝑇 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) )
24 23 adantl ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) → 𝑇 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) )
25 21 24 eqtr4d ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) → 𝑋 = 𝑇 )
26 25 ex ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) → ( 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) → 𝑋 = 𝑇 ) )
27 fnetr ( ( 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ∧ ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥 ) → 𝑇 Fne 𝑥 )
28 27 expcom ( ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥 → ( 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) → 𝑇 Fne 𝑥 ) )
29 11 28 syl ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦𝑥𝑆 ) → ( 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) → 𝑇 Fne 𝑥 ) )
30 29 3expa ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ 𝑥𝑆 ) → ( 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) → 𝑇 Fne 𝑥 ) )
31 30 ralrimdva ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) → ( 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) → ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) )
32 26 31 jcad ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) → ( 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) → ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) )
33 simprl ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → 𝑋 = 𝑇 )
34 20 adantr ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → 𝑋 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) )
35 33 34 eqtr3d ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → 𝑇 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) )
36 eqimss2 ( 𝑋 = 𝑇 𝑇𝑋 )
37 36 ad2antrl ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → 𝑇𝑋 )
38 sspwuni ( 𝑇 ⊆ 𝒫 𝑋 𝑇𝑋 )
39 37 38 sylibr ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → 𝑇 ⊆ 𝒫 𝑋 )
40 breq2 ( 𝑥 = 𝑡 → ( 𝑇 Fne 𝑥𝑇 Fne 𝑡 ) )
41 40 cbvralvw ( ∀ 𝑥𝑆 𝑇 Fne 𝑥 ↔ ∀ 𝑡𝑆 𝑇 Fne 𝑡 )
42 fnetg ( 𝑇 Fne 𝑡𝑇 ⊆ ( topGen ‘ 𝑡 ) )
43 42 ralimi ( ∀ 𝑡𝑆 𝑇 Fne 𝑡 → ∀ 𝑡𝑆 𝑇 ⊆ ( topGen ‘ 𝑡 ) )
44 41 43 sylbi ( ∀ 𝑥𝑆 𝑇 Fne 𝑥 → ∀ 𝑡𝑆 𝑇 ⊆ ( topGen ‘ 𝑡 ) )
45 44 ad2antll ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → ∀ 𝑡𝑆 𝑇 ⊆ ( topGen ‘ 𝑡 ) )
46 ssiin ( 𝑇 𝑡𝑆 ( topGen ‘ 𝑡 ) ↔ ∀ 𝑡𝑆 𝑇 ⊆ ( topGen ‘ 𝑡 ) )
47 45 46 sylibr ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → 𝑇 𝑡𝑆 ( topGen ‘ 𝑡 ) )
48 39 47 ssind ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → 𝑇 ⊆ ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) )
49 pwexg ( 𝑋𝑉 → 𝒫 𝑋 ∈ V )
50 inex1g ( 𝒫 𝑋 ∈ V → ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ∈ V )
51 49 50 syl ( 𝑋𝑉 → ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ∈ V )
52 51 ad2antrr ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ∈ V )
53 bastg ( ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ∈ V → ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ⊆ ( topGen ‘ ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) )
54 52 53 syl ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ⊆ ( topGen ‘ ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) )
55 48 54 sstrd ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → 𝑇 ⊆ ( topGen ‘ ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) )
56 22 12 isfne4 ( 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ↔ ( 𝑇 = ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ∧ 𝑇 ⊆ ( topGen ‘ ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) ) )
57 35 55 56 sylanbrc ( ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) ∧ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) → 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) )
58 57 ex ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) → ( ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) → 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ) )
59 32 58 impbid ( ( 𝑋𝑉 ∧ ∀ 𝑦𝑆 𝑋 = 𝑦 ) → ( 𝑇 Fne ( 𝒫 𝑋 𝑡𝑆 ( topGen ‘ 𝑡 ) ) ↔ ( 𝑋 = 𝑇 ∧ ∀ 𝑥𝑆 𝑇 Fne 𝑥 ) ) )