| Step | Hyp | Ref | Expression | 
						
							| 1 |  | riin0 | ⊢ ( 𝑆  =  ∅  →  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  =  𝒫  𝑋 ) | 
						
							| 2 | 1 | unieqd | ⊢ ( 𝑆  =  ∅  →  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  =  ∪  𝒫  𝑋 ) | 
						
							| 3 |  | unipw | ⊢ ∪  𝒫  𝑋  =  𝑋 | 
						
							| 4 | 2 3 | eqtr2di | ⊢ ( 𝑆  =  ∅  →  𝑋  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  →  ( 𝑆  =  ∅  →  𝑋  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) ) | 
						
							| 6 |  | n0 | ⊢ ( 𝑆  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝑆 ) | 
						
							| 7 |  | unieq | ⊢ ( 𝑦  =  𝑥  →  ∪  𝑦  =  ∪  𝑥 ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( 𝑦  =  𝑥  →  ( 𝑋  =  ∪  𝑦  ↔  𝑋  =  ∪  𝑥 ) ) | 
						
							| 9 | 8 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝑥  ∈  𝑆 )  →  𝑋  =  ∪  𝑥 ) | 
						
							| 10 | 9 | 3adant1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝑥  ∈  𝑆 )  →  𝑋  =  ∪  𝑥 ) | 
						
							| 11 |  | fnemeet1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝑥  ∈  𝑆 )  →  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥 ) | 
						
							| 12 |  | eqid | ⊢ ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) | 
						
							| 13 |  | eqid | ⊢ ∪  𝑥  =  ∪  𝑥 | 
						
							| 14 | 12 13 | fnebas | ⊢ ( ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥  →  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  =  ∪  𝑥 ) | 
						
							| 15 | 11 14 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝑥  ∈  𝑆 )  →  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  =  ∪  𝑥 ) | 
						
							| 16 | 10 15 | eqtr4d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝑥  ∈  𝑆 )  →  𝑋  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) | 
						
							| 17 | 16 | 3expia | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  →  ( 𝑥  ∈  𝑆  →  𝑋  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) ) | 
						
							| 18 | 17 | exlimdv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  →  ( ∃ 𝑥 𝑥  ∈  𝑆  →  𝑋  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) ) | 
						
							| 19 | 6 18 | biimtrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  →  ( 𝑆  ≠  ∅  →  𝑋  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) ) | 
						
							| 20 | 5 19 | pm2.61dne | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  →  𝑋  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) )  →  𝑋  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) | 
						
							| 22 |  | eqid | ⊢ ∪  𝑇  =  ∪  𝑇 | 
						
							| 23 | 22 12 | fnebas | ⊢ ( 𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  →  ∪  𝑇  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) )  →  ∪  𝑇  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) | 
						
							| 25 | 21 24 | eqtr4d | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) )  →  𝑋  =  ∪  𝑇 ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  →  ( 𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  →  𝑋  =  ∪  𝑇 ) ) | 
						
							| 27 |  | fnetr | ⊢ ( ( 𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  ∧  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥 )  →  𝑇 Fne 𝑥 ) | 
						
							| 28 | 27 | expcom | ⊢ ( ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) Fne 𝑥  →  ( 𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  →  𝑇 Fne 𝑥 ) ) | 
						
							| 29 | 11 28 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝑥  ∈  𝑆 )  →  ( 𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  →  𝑇 Fne 𝑥 ) ) | 
						
							| 30 | 29 | 3expa | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  →  𝑇 Fne 𝑥 ) ) | 
						
							| 31 | 30 | ralrimdva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  →  ( 𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  →  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) ) | 
						
							| 32 | 26 31 | jcad | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  →  ( 𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  →  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) ) ) | 
						
							| 33 |  | simprl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  𝑋  =  ∪  𝑇 ) | 
						
							| 34 | 20 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  𝑋  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) | 
						
							| 35 | 33 34 | eqtr3d | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  ∪  𝑇  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) | 
						
							| 36 |  | eqimss2 | ⊢ ( 𝑋  =  ∪  𝑇  →  ∪  𝑇  ⊆  𝑋 ) | 
						
							| 37 | 36 | ad2antrl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  ∪  𝑇  ⊆  𝑋 ) | 
						
							| 38 |  | sspwuni | ⊢ ( 𝑇  ⊆  𝒫  𝑋  ↔  ∪  𝑇  ⊆  𝑋 ) | 
						
							| 39 | 37 38 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  𝑇  ⊆  𝒫  𝑋 ) | 
						
							| 40 |  | breq2 | ⊢ ( 𝑥  =  𝑡  →  ( 𝑇 Fne 𝑥  ↔  𝑇 Fne 𝑡 ) ) | 
						
							| 41 | 40 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥  ↔  ∀ 𝑡  ∈  𝑆 𝑇 Fne 𝑡 ) | 
						
							| 42 |  | fnetg | ⊢ ( 𝑇 Fne 𝑡  →  𝑇  ⊆  ( topGen ‘ 𝑡 ) ) | 
						
							| 43 | 42 | ralimi | ⊢ ( ∀ 𝑡  ∈  𝑆 𝑇 Fne 𝑡  →  ∀ 𝑡  ∈  𝑆 𝑇  ⊆  ( topGen ‘ 𝑡 ) ) | 
						
							| 44 | 41 43 | sylbi | ⊢ ( ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥  →  ∀ 𝑡  ∈  𝑆 𝑇  ⊆  ( topGen ‘ 𝑡 ) ) | 
						
							| 45 | 44 | ad2antll | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  ∀ 𝑡  ∈  𝑆 𝑇  ⊆  ( topGen ‘ 𝑡 ) ) | 
						
							| 46 |  | ssiin | ⊢ ( 𝑇  ⊆  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  𝑆 𝑇  ⊆  ( topGen ‘ 𝑡 ) ) | 
						
							| 47 | 45 46 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  𝑇  ⊆  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) | 
						
							| 48 | 39 47 | ssind | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  𝑇  ⊆  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) | 
						
							| 49 |  | pwexg | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  𝑋  ∈  V ) | 
						
							| 50 |  | inex1g | ⊢ ( 𝒫  𝑋  ∈  V  →  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  ∈  V ) | 
						
							| 51 | 49 50 | syl | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  ∈  V ) | 
						
							| 52 | 51 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  ∈  V ) | 
						
							| 53 |  | bastg | ⊢ ( ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  ∈  V  →  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  ⊆  ( topGen ‘ ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) ) | 
						
							| 54 | 52 53 | syl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  ⊆  ( topGen ‘ ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) ) | 
						
							| 55 | 48 54 | sstrd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  𝑇  ⊆  ( topGen ‘ ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) ) | 
						
							| 56 | 22 12 | isfne4 | ⊢ ( 𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  ↔  ( ∪  𝑇  =  ∪  ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  ∧  𝑇  ⊆  ( topGen ‘ ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) ) ) | 
						
							| 57 | 35 55 56 | sylanbrc | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  ∧  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) )  →  𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) | 
						
							| 58 | 57 | ex | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  →  ( ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 )  →  𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) ) ) ) | 
						
							| 59 | 32 58 | impbid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦 )  →  ( 𝑇 Fne ( 𝒫  𝑋  ∩  ∩  𝑡  ∈  𝑆 ( topGen ‘ 𝑡 ) )  ↔  ( 𝑋  =  ∪  𝑇  ∧  ∀ 𝑥  ∈  𝑆 𝑇 Fne 𝑥 ) ) ) |