Step |
Hyp |
Ref |
Expression |
1 |
|
riin0 |
|
2 |
1
|
unieqd |
|
3 |
|
unipw |
|
4 |
2 3
|
eqtr2di |
|
5 |
4
|
a1i |
|
6 |
|
n0 |
|
7 |
|
unieq |
|
8 |
7
|
eqeq2d |
|
9 |
8
|
rspccva |
|
10 |
9
|
3adant1 |
|
11 |
|
fnemeet1 |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12 13
|
fnebas |
|
15 |
11 14
|
syl |
|
16 |
10 15
|
eqtr4d |
|
17 |
16
|
3expia |
|
18 |
17
|
exlimdv |
|
19 |
6 18
|
syl5bi |
|
20 |
5 19
|
pm2.61dne |
|
21 |
20
|
adantr |
|
22 |
|
eqid |
|
23 |
22 12
|
fnebas |
|
24 |
23
|
adantl |
|
25 |
21 24
|
eqtr4d |
|
26 |
25
|
ex |
|
27 |
|
fnetr |
|
28 |
27
|
expcom |
|
29 |
11 28
|
syl |
|
30 |
29
|
3expa |
|
31 |
30
|
ralrimdva |
|
32 |
26 31
|
jcad |
|
33 |
|
simprl |
|
34 |
20
|
adantr |
|
35 |
33 34
|
eqtr3d |
|
36 |
|
eqimss2 |
|
37 |
36
|
ad2antrl |
|
38 |
|
sspwuni |
|
39 |
37 38
|
sylibr |
|
40 |
|
breq2 |
|
41 |
40
|
cbvralvw |
|
42 |
|
fnetg |
|
43 |
42
|
ralimi |
|
44 |
41 43
|
sylbi |
|
45 |
44
|
ad2antll |
|
46 |
|
ssiin |
|
47 |
45 46
|
sylibr |
|
48 |
39 47
|
ssind |
|
49 |
|
pwexg |
|
50 |
|
inex1g |
|
51 |
49 50
|
syl |
|
52 |
51
|
ad2antrr |
|
53 |
|
bastg |
|
54 |
52 53
|
syl |
|
55 |
48 54
|
sstrd |
|
56 |
22 12
|
isfne4 |
|
57 |
35 55 56
|
sylanbrc |
|
58 |
57
|
ex |
|
59 |
32 58
|
impbid |
|