| Step |
Hyp |
Ref |
Expression |
| 1 |
|
riin0 |
|
| 2 |
1
|
unieqd |
|
| 3 |
|
unipw |
|
| 4 |
2 3
|
eqtr2di |
|
| 5 |
4
|
a1i |
|
| 6 |
|
n0 |
|
| 7 |
|
unieq |
|
| 8 |
7
|
eqeq2d |
|
| 9 |
8
|
rspccva |
|
| 10 |
9
|
3adant1 |
|
| 11 |
|
fnemeet1 |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
fnebas |
|
| 15 |
11 14
|
syl |
|
| 16 |
10 15
|
eqtr4d |
|
| 17 |
16
|
3expia |
|
| 18 |
17
|
exlimdv |
|
| 19 |
6 18
|
biimtrid |
|
| 20 |
5 19
|
pm2.61dne |
|
| 21 |
20
|
adantr |
|
| 22 |
|
eqid |
|
| 23 |
22 12
|
fnebas |
|
| 24 |
23
|
adantl |
|
| 25 |
21 24
|
eqtr4d |
|
| 26 |
25
|
ex |
|
| 27 |
|
fnetr |
|
| 28 |
27
|
expcom |
|
| 29 |
11 28
|
syl |
|
| 30 |
29
|
3expa |
|
| 31 |
30
|
ralrimdva |
|
| 32 |
26 31
|
jcad |
|
| 33 |
|
simprl |
|
| 34 |
20
|
adantr |
|
| 35 |
33 34
|
eqtr3d |
|
| 36 |
|
eqimss2 |
|
| 37 |
36
|
ad2antrl |
|
| 38 |
|
sspwuni |
|
| 39 |
37 38
|
sylibr |
|
| 40 |
|
breq2 |
|
| 41 |
40
|
cbvralvw |
|
| 42 |
|
fnetg |
|
| 43 |
42
|
ralimi |
|
| 44 |
41 43
|
sylbi |
|
| 45 |
44
|
ad2antll |
|
| 46 |
|
ssiin |
|
| 47 |
45 46
|
sylibr |
|
| 48 |
39 47
|
ssind |
|
| 49 |
|
pwexg |
|
| 50 |
|
inex1g |
|
| 51 |
49 50
|
syl |
|
| 52 |
51
|
ad2antrr |
|
| 53 |
|
bastg |
|
| 54 |
52 53
|
syl |
|
| 55 |
48 54
|
sstrd |
|
| 56 |
22 12
|
isfne4 |
|
| 57 |
35 55 56
|
sylanbrc |
|
| 58 |
57
|
ex |
|
| 59 |
32 58
|
impbid |
|