| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elssuni | ⊢ ( 𝐴  ∈  𝑆  →  𝐴  ⊆  ∪  𝑆 ) | 
						
							| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝐴  ⊆  ∪  𝑆 ) | 
						
							| 3 | 2 | unissd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  𝐴  ⊆  ∪  ∪  𝑆 ) | 
						
							| 4 |  | eqimss2 | ⊢ ( 𝑋  =  ∪  𝑦  →  ∪  𝑦  ⊆  𝑋 ) | 
						
							| 5 |  | sspwuni | ⊢ ( 𝑦  ⊆  𝒫  𝑋  ↔  ∪  𝑦  ⊆  𝑋 ) | 
						
							| 6 | 4 5 | sylibr | ⊢ ( 𝑋  =  ∪  𝑦  →  𝑦  ⊆  𝒫  𝑋 ) | 
						
							| 7 | 6 | ralimi | ⊢ ( ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  →  ∀ 𝑦  ∈  𝑆 𝑦  ⊆  𝒫  𝑋 ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∀ 𝑦  ∈  𝑆 𝑦  ⊆  𝒫  𝑋 ) | 
						
							| 9 |  | unissb | ⊢ ( ∪  𝑆  ⊆  𝒫  𝑋  ↔  ∀ 𝑦  ∈  𝑆 𝑦  ⊆  𝒫  𝑋 ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  𝑆  ⊆  𝒫  𝑋 ) | 
						
							| 11 |  | sspwuni | ⊢ ( ∪  𝑆  ⊆  𝒫  𝑋  ↔  ∪  ∪  𝑆  ⊆  𝑋 ) | 
						
							| 12 | 10 11 | sylib | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  ∪  𝑆  ⊆  𝑋 ) | 
						
							| 13 |  | unieq | ⊢ ( 𝑦  =  𝐴  →  ∪  𝑦  =  ∪  𝐴 ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( 𝑦  =  𝐴  →  ( 𝑋  =  ∪  𝑦  ↔  𝑋  =  ∪  𝐴 ) ) | 
						
							| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝑋  =  ∪  𝐴 ) | 
						
							| 16 | 15 | 3adant1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝑋  =  ∪  𝐴 ) | 
						
							| 17 | 12 16 | sseqtrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  ∪  𝑆  ⊆  ∪  𝐴 ) | 
						
							| 18 | 3 17 | eqssd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  𝐴  =  ∪  ∪  𝑆 ) | 
						
							| 19 |  | pwexg | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  𝑋  ∈  V ) | 
						
							| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝒫  𝑋  ∈  V ) | 
						
							| 21 | 20 10 | ssexd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  𝑆  ∈  V ) | 
						
							| 22 |  | bastg | ⊢ ( ∪  𝑆  ∈  V  →  ∪  𝑆  ⊆  ( topGen ‘ ∪  𝑆 ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  ∪  𝑆  ⊆  ( topGen ‘ ∪  𝑆 ) ) | 
						
							| 24 | 2 23 | sstrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝐴  ⊆  ( topGen ‘ ∪  𝑆 ) ) | 
						
							| 25 |  | eqid | ⊢ ∪  𝐴  =  ∪  𝐴 | 
						
							| 26 |  | eqid | ⊢ ∪  ∪  𝑆  =  ∪  ∪  𝑆 | 
						
							| 27 | 25 26 | isfne4 | ⊢ ( 𝐴 Fne ∪  𝑆  ↔  ( ∪  𝐴  =  ∪  ∪  𝑆  ∧  𝐴  ⊆  ( topGen ‘ ∪  𝑆 ) ) ) | 
						
							| 28 | 18 24 27 | sylanbrc | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝐴 Fne ∪  𝑆 ) | 
						
							| 29 |  | ne0i | ⊢ ( 𝐴  ∈  𝑆  →  𝑆  ≠  ∅ ) | 
						
							| 30 | 29 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝑆  ≠  ∅ ) | 
						
							| 31 |  | ifnefalse | ⊢ ( 𝑆  ≠  ∅  →  if ( 𝑆  =  ∅ ,  { 𝑋 } ,  ∪  𝑆 )  =  ∪  𝑆 ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  if ( 𝑆  =  ∅ ,  { 𝑋 } ,  ∪  𝑆 )  =  ∪  𝑆 ) | 
						
							| 33 | 28 32 | breqtrrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝑆 𝑋  =  ∪  𝑦  ∧  𝐴  ∈  𝑆 )  →  𝐴 Fne if ( 𝑆  =  ∅ ,  { 𝑋 } ,  ∪  𝑆 ) ) |