Step |
Hyp |
Ref |
Expression |
1 |
|
unisng |
⊢ ( 𝑋 ∈ 𝑉 → ∪ { 𝑋 } = 𝑋 ) |
2 |
1
|
eqcomd |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 = ∪ { 𝑋 } ) |
3 |
2
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → 𝑋 = ∪ { 𝑋 } ) |
4 |
|
iftrue |
⊢ ( 𝑆 = ∅ → if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) = { 𝑋 } ) |
5 |
4
|
unieqd |
⊢ ( 𝑆 = ∅ → ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) = ∪ { 𝑋 } ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑆 = ∅ → ( 𝑋 = ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ↔ 𝑋 = ∪ { 𝑋 } ) ) |
7 |
3 6
|
syl5ibrcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( 𝑆 = ∅ → 𝑋 = ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ) ) |
8 |
|
n0 |
⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑆 ) |
9 |
|
unieq |
⊢ ( 𝑦 = 𝑥 → ∪ 𝑦 = ∪ 𝑥 ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑥 ) ) |
11 |
10
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → 𝑋 = ∪ 𝑥 ) |
12 |
11
|
3adant1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → 𝑋 = ∪ 𝑥 ) |
13 |
|
fnejoin1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 Fne if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ) |
14 |
|
eqid |
⊢ ∪ 𝑥 = ∪ 𝑥 |
15 |
|
eqid |
⊢ ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) = ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) |
16 |
14 15
|
fnebas |
⊢ ( 𝑥 Fne if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) → ∪ 𝑥 = ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ) |
17 |
13 16
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → ∪ 𝑥 = ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ) |
18 |
12 17
|
eqtrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → 𝑋 = ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ) |
19 |
18
|
3expia |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( 𝑥 ∈ 𝑆 → 𝑋 = ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ) ) |
20 |
19
|
exlimdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( ∃ 𝑥 𝑥 ∈ 𝑆 → 𝑋 = ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ) ) |
21 |
8 20
|
syl5bi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( 𝑆 ≠ ∅ → 𝑋 = ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ) ) |
22 |
7 21
|
pm2.61dne |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → 𝑋 = ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ) |
23 |
|
eqid |
⊢ ∪ 𝑇 = ∪ 𝑇 |
24 |
15 23
|
fnebas |
⊢ ( if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 → ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) = ∪ 𝑇 ) |
25 |
22 24
|
sylan9eq |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 ) → 𝑋 = ∪ 𝑇 ) |
26 |
25
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 → 𝑋 = ∪ 𝑇 ) ) |
27 |
|
fnetr |
⊢ ( ( 𝑥 Fne if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ∧ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 ) → 𝑥 Fne 𝑇 ) |
28 |
27
|
ex |
⊢ ( 𝑥 Fne if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) → ( if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 → 𝑥 Fne 𝑇 ) ) |
29 |
13 28
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝑥 ∈ 𝑆 ) → ( if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 → 𝑥 Fne 𝑇 ) ) |
30 |
29
|
3expa |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ 𝑥 ∈ 𝑆 ) → ( if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 → 𝑥 Fne 𝑇 ) ) |
31 |
30
|
ralrimdva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 → ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) |
32 |
26 31
|
jcad |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 → ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) ) |
33 |
22
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) → 𝑋 = ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ) |
34 |
|
simprl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) → 𝑋 = ∪ 𝑇 ) |
35 |
33 34
|
eqtr3d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) → ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) = ∪ 𝑇 ) |
36 |
|
sseq1 |
⊢ ( { 𝑋 } = if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) → ( { 𝑋 } ⊆ ( topGen ‘ 𝑇 ) ↔ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ⊆ ( topGen ‘ 𝑇 ) ) ) |
37 |
|
sseq1 |
⊢ ( ∪ 𝑆 = if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) → ( ∪ 𝑆 ⊆ ( topGen ‘ 𝑇 ) ↔ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ⊆ ( topGen ‘ 𝑇 ) ) ) |
38 |
|
elex |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) → 𝑋 ∈ V ) |
40 |
34 39
|
eqeltrrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) → ∪ 𝑇 ∈ V ) |
41 |
|
uniexb |
⊢ ( 𝑇 ∈ V ↔ ∪ 𝑇 ∈ V ) |
42 |
40 41
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) → 𝑇 ∈ V ) |
43 |
|
ssid |
⊢ 𝑇 ⊆ 𝑇 |
44 |
|
eltg3i |
⊢ ( ( 𝑇 ∈ V ∧ 𝑇 ⊆ 𝑇 ) → ∪ 𝑇 ∈ ( topGen ‘ 𝑇 ) ) |
45 |
42 43 44
|
sylancl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) → ∪ 𝑇 ∈ ( topGen ‘ 𝑇 ) ) |
46 |
34 45
|
eqeltrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) → 𝑋 ∈ ( topGen ‘ 𝑇 ) ) |
47 |
46
|
snssd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) → { 𝑋 } ⊆ ( topGen ‘ 𝑇 ) ) |
48 |
47
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) ∧ 𝑆 = ∅ ) → { 𝑋 } ⊆ ( topGen ‘ 𝑇 ) ) |
49 |
|
simplrr |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) ∧ ¬ 𝑆 = ∅ ) → ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) |
50 |
|
fnetg |
⊢ ( 𝑥 Fne 𝑇 → 𝑥 ⊆ ( topGen ‘ 𝑇 ) ) |
51 |
50
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 → ∀ 𝑥 ∈ 𝑆 𝑥 ⊆ ( topGen ‘ 𝑇 ) ) |
52 |
49 51
|
syl |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) ∧ ¬ 𝑆 = ∅ ) → ∀ 𝑥 ∈ 𝑆 𝑥 ⊆ ( topGen ‘ 𝑇 ) ) |
53 |
|
unissb |
⊢ ( ∪ 𝑆 ⊆ ( topGen ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ 𝑆 𝑥 ⊆ ( topGen ‘ 𝑇 ) ) |
54 |
52 53
|
sylibr |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) ∧ ¬ 𝑆 = ∅ ) → ∪ 𝑆 ⊆ ( topGen ‘ 𝑇 ) ) |
55 |
36 37 48 54
|
ifbothda |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) → if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ⊆ ( topGen ‘ 𝑇 ) ) |
56 |
15 23
|
isfne4 |
⊢ ( if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 ↔ ( ∪ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) = ∪ 𝑇 ∧ if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) ⊆ ( topGen ‘ 𝑇 ) ) ) |
57 |
35 55 56
|
sylanbrc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) ∧ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) → if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 ) |
58 |
57
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) → if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 ) ) |
59 |
32 58
|
impbid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ) → ( if ( 𝑆 = ∅ , { 𝑋 } , ∪ 𝑆 ) Fne 𝑇 ↔ ( 𝑋 = ∪ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 Fne 𝑇 ) ) ) |