Metamath Proof Explorer


Theorem fnejoin2

Description: Join of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 8-Oct-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion fnejoin2 X V y S X = y if S = X S Fne T X = T x S x Fne T

Proof

Step Hyp Ref Expression
1 unisng X V X = X
2 1 eqcomd X V X = X
3 2 adantr X V y S X = y X = X
4 iftrue S = if S = X S = X
5 4 unieqd S = if S = X S = X
6 5 eqeq2d S = X = if S = X S X = X
7 3 6 syl5ibrcom X V y S X = y S = X = if S = X S
8 n0 S x x S
9 unieq y = x y = x
10 9 eqeq2d y = x X = y X = x
11 10 rspccva y S X = y x S X = x
12 11 3adant1 X V y S X = y x S X = x
13 fnejoin1 X V y S X = y x S x Fne if S = X S
14 eqid x = x
15 eqid if S = X S = if S = X S
16 14 15 fnebas x Fne if S = X S x = if S = X S
17 13 16 syl X V y S X = y x S x = if S = X S
18 12 17 eqtrd X V y S X = y x S X = if S = X S
19 18 3expia X V y S X = y x S X = if S = X S
20 19 exlimdv X V y S X = y x x S X = if S = X S
21 8 20 syl5bi X V y S X = y S X = if S = X S
22 7 21 pm2.61dne X V y S X = y X = if S = X S
23 eqid T = T
24 15 23 fnebas if S = X S Fne T if S = X S = T
25 22 24 sylan9eq X V y S X = y if S = X S Fne T X = T
26 25 ex X V y S X = y if S = X S Fne T X = T
27 fnetr x Fne if S = X S if S = X S Fne T x Fne T
28 27 ex x Fne if S = X S if S = X S Fne T x Fne T
29 13 28 syl X V y S X = y x S if S = X S Fne T x Fne T
30 29 3expa X V y S X = y x S if S = X S Fne T x Fne T
31 30 ralrimdva X V y S X = y if S = X S Fne T x S x Fne T
32 26 31 jcad X V y S X = y if S = X S Fne T X = T x S x Fne T
33 22 adantr X V y S X = y X = T x S x Fne T X = if S = X S
34 simprl X V y S X = y X = T x S x Fne T X = T
35 33 34 eqtr3d X V y S X = y X = T x S x Fne T if S = X S = T
36 sseq1 X = if S = X S X topGen T if S = X S topGen T
37 sseq1 S = if S = X S S topGen T if S = X S topGen T
38 elex X V X V
39 38 ad2antrr X V y S X = y X = T x S x Fne T X V
40 34 39 eqeltrrd X V y S X = y X = T x S x Fne T T V
41 uniexb T V T V
42 40 41 sylibr X V y S X = y X = T x S x Fne T T V
43 ssid T T
44 eltg3i T V T T T topGen T
45 42 43 44 sylancl X V y S X = y X = T x S x Fne T T topGen T
46 34 45 eqeltrd X V y S X = y X = T x S x Fne T X topGen T
47 46 snssd X V y S X = y X = T x S x Fne T X topGen T
48 47 adantr X V y S X = y X = T x S x Fne T S = X topGen T
49 simplrr X V y S X = y X = T x S x Fne T ¬ S = x S x Fne T
50 fnetg x Fne T x topGen T
51 50 ralimi x S x Fne T x S x topGen T
52 49 51 syl X V y S X = y X = T x S x Fne T ¬ S = x S x topGen T
53 unissb S topGen T x S x topGen T
54 52 53 sylibr X V y S X = y X = T x S x Fne T ¬ S = S topGen T
55 36 37 48 54 ifbothda X V y S X = y X = T x S x Fne T if S = X S topGen T
56 15 23 isfne4 if S = X S Fne T if S = X S = T if S = X S topGen T
57 35 55 56 sylanbrc X V y S X = y X = T x S x Fne T if S = X S Fne T
58 57 ex X V y S X = y X = T x S x Fne T if S = X S Fne T
59 32 58 impbid X V y S X = y if S = X S Fne T X = T x S x Fne T