| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unisng |
|
| 2 |
1
|
eqcomd |
|
| 3 |
2
|
adantr |
|
| 4 |
|
iftrue |
|
| 5 |
4
|
unieqd |
|
| 6 |
5
|
eqeq2d |
|
| 7 |
3 6
|
syl5ibrcom |
|
| 8 |
|
n0 |
|
| 9 |
|
unieq |
|
| 10 |
9
|
eqeq2d |
|
| 11 |
10
|
rspccva |
|
| 12 |
11
|
3adant1 |
|
| 13 |
|
fnejoin1 |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
14 15
|
fnebas |
|
| 17 |
13 16
|
syl |
|
| 18 |
12 17
|
eqtrd |
|
| 19 |
18
|
3expia |
|
| 20 |
19
|
exlimdv |
|
| 21 |
8 20
|
biimtrid |
|
| 22 |
7 21
|
pm2.61dne |
|
| 23 |
|
eqid |
|
| 24 |
15 23
|
fnebas |
|
| 25 |
22 24
|
sylan9eq |
|
| 26 |
25
|
ex |
|
| 27 |
|
fnetr |
|
| 28 |
27
|
ex |
|
| 29 |
13 28
|
syl |
|
| 30 |
29
|
3expa |
|
| 31 |
30
|
ralrimdva |
|
| 32 |
26 31
|
jcad |
|
| 33 |
22
|
adantr |
|
| 34 |
|
simprl |
|
| 35 |
33 34
|
eqtr3d |
|
| 36 |
|
sseq1 |
|
| 37 |
|
sseq1 |
|
| 38 |
|
elex |
|
| 39 |
38
|
ad2antrr |
|
| 40 |
34 39
|
eqeltrrd |
|
| 41 |
|
uniexb |
|
| 42 |
40 41
|
sylibr |
|
| 43 |
|
ssid |
|
| 44 |
|
eltg3i |
|
| 45 |
42 43 44
|
sylancl |
|
| 46 |
34 45
|
eqeltrd |
|
| 47 |
46
|
snssd |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simplrr |
|
| 50 |
|
fnetg |
|
| 51 |
50
|
ralimi |
|
| 52 |
49 51
|
syl |
|
| 53 |
|
unissb |
|
| 54 |
52 53
|
sylibr |
|
| 55 |
36 37 48 54
|
ifbothda |
|
| 56 |
15 23
|
isfne4 |
|
| 57 |
35 55 56
|
sylanbrc |
|
| 58 |
57
|
ex |
|
| 59 |
32 58
|
impbid |
|