Step |
Hyp |
Ref |
Expression |
1 |
|
unisng |
|
2 |
1
|
eqcomd |
|
3 |
2
|
adantr |
|
4 |
|
iftrue |
|
5 |
4
|
unieqd |
|
6 |
5
|
eqeq2d |
|
7 |
3 6
|
syl5ibrcom |
|
8 |
|
n0 |
|
9 |
|
unieq |
|
10 |
9
|
eqeq2d |
|
11 |
10
|
rspccva |
|
12 |
11
|
3adant1 |
|
13 |
|
fnejoin1 |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
14 15
|
fnebas |
|
17 |
13 16
|
syl |
|
18 |
12 17
|
eqtrd |
|
19 |
18
|
3expia |
|
20 |
19
|
exlimdv |
|
21 |
8 20
|
syl5bi |
|
22 |
7 21
|
pm2.61dne |
|
23 |
|
eqid |
|
24 |
15 23
|
fnebas |
|
25 |
22 24
|
sylan9eq |
|
26 |
25
|
ex |
|
27 |
|
fnetr |
|
28 |
27
|
ex |
|
29 |
13 28
|
syl |
|
30 |
29
|
3expa |
|
31 |
30
|
ralrimdva |
|
32 |
26 31
|
jcad |
|
33 |
22
|
adantr |
|
34 |
|
simprl |
|
35 |
33 34
|
eqtr3d |
|
36 |
|
sseq1 |
|
37 |
|
sseq1 |
|
38 |
|
elex |
|
39 |
38
|
ad2antrr |
|
40 |
34 39
|
eqeltrrd |
|
41 |
|
uniexb |
|
42 |
40 41
|
sylibr |
|
43 |
|
ssid |
|
44 |
|
eltg3i |
|
45 |
42 43 44
|
sylancl |
|
46 |
34 45
|
eqeltrd |
|
47 |
46
|
snssd |
|
48 |
47
|
adantr |
|
49 |
|
simplrr |
|
50 |
|
fnetg |
|
51 |
50
|
ralimi |
|
52 |
49 51
|
syl |
|
53 |
|
unissb |
|
54 |
52 53
|
sylibr |
|
55 |
36 37 48 54
|
ifbothda |
|
56 |
15 23
|
isfne4 |
|
57 |
35 55 56
|
sylanbrc |
|
58 |
57
|
ex |
|
59 |
32 58
|
impbid |
|