| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rint0 |
⊢ ( 𝑆 = ∅ → ( 𝑋 ∩ ∩ 𝑆 ) = 𝑋 ) |
| 2 |
1
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) ∧ 𝑆 = ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) = 𝑋 ) |
| 3 |
|
mre1cl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) |
| 4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) ∧ 𝑆 = ∅ ) → 𝑋 ∈ 𝐶 ) |
| 5 |
2 4
|
eqeltrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) ∧ 𝑆 = ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) ∈ 𝐶 ) |
| 6 |
|
simp2 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ 𝐶 ) |
| 7 |
|
mresspw |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 ⊆ 𝒫 𝑋 ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝐶 ⊆ 𝒫 𝑋 ) |
| 9 |
6 8
|
sstrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ 𝒫 𝑋 ) |
| 10 |
|
simp3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝑆 ≠ ∅ ) |
| 11 |
|
rintn0 |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑋 ∧ 𝑆 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) = ∩ 𝑆 ) |
| 12 |
9 10 11
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) = ∩ 𝑆 ) |
| 13 |
|
mreintcl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ 𝐶 ) |
| 14 |
12 13
|
eqeltrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) ∈ 𝐶 ) |
| 15 |
14
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) ∧ 𝑆 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑆 ) ∈ 𝐶 ) |
| 16 |
5 15
|
pm2.61dane |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑆 ) ∈ 𝐶 ) |