Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Hankins
Lattice structure of topologies
topmtcl
Metamath Proof Explorer
Description: The meet of a collection of topologies on X is again a topology on
X . (Contributed by Jeff Hankins , 5-Oct-2009) (Proof shortened by Mario Carneiro , 12-Sep-2015)
Ref
Expression
Assertion
topmtcl
⊢ X ∈ V ∧ S ⊆ TopOn ⁡ X → 𝒫 X ∩ ⋂ S ∈ TopOn ⁡ X
Proof
Step
Hyp
Ref
Expression
1
toponmre
⊢ X ∈ V → TopOn ⁡ X ∈ Moore ⁡ 𝒫 X
2
mrerintcl
⊢ TopOn ⁡ X ∈ Moore ⁡ 𝒫 X ∧ S ⊆ TopOn ⁡ X → 𝒫 X ∩ ⋂ S ∈ TopOn ⁡ X
3
1 2
sylan
⊢ X ∈ V ∧ S ⊆ TopOn ⁡ X → 𝒫 X ∩ ⋂ S ∈ TopOn ⁡ X