Metamath Proof Explorer


Theorem topmtcl

Description: The meet of a collection of topologies on X is again a topology on X . (Contributed by Jeff Hankins, 5-Oct-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion topmtcl X V S TopOn X 𝒫 X S TopOn X

Proof

Step Hyp Ref Expression
1 toponmre X V TopOn X Moore 𝒫 X
2 mrerintcl TopOn X Moore 𝒫 X S TopOn X 𝒫 X S TopOn X
3 1 2 sylan X V S TopOn X 𝒫 X S TopOn X