Metamath Proof Explorer


Theorem toslub

Description: In a toset, the lowest upper bound lub , defined for partial orders is the supremum, sup ( A , B , .< ) , defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018) (Revised by Thierry Arnoux, 24-Sep-2018)

Ref Expression
Hypotheses toslub.b
|- B = ( Base ` K )
toslub.l
|- .< = ( lt ` K )
toslub.1
|- ( ph -> K e. Toset )
toslub.2
|- ( ph -> A C_ B )
Assertion toslub
|- ( ph -> ( ( lub ` K ) ` A ) = sup ( A , B , .< ) )

Proof

Step Hyp Ref Expression
1 toslub.b
 |-  B = ( Base ` K )
2 toslub.l
 |-  .< = ( lt ` K )
3 toslub.1
 |-  ( ph -> K e. Toset )
4 toslub.2
 |-  ( ph -> A C_ B )
5 eqid
 |-  ( le ` K ) = ( le ` K )
6 1 2 3 4 5 toslublem
 |-  ( ( ph /\ a e. B ) -> ( ( A. b e. A b ( le ` K ) a /\ A. c e. B ( A. b e. A b ( le ` K ) c -> a ( le ` K ) c ) ) <-> ( A. b e. A -. a .< b /\ A. b e. B ( b .< a -> E. d e. A b .< d ) ) ) )
7 6 riotabidva
 |-  ( ph -> ( iota_ a e. B ( A. b e. A b ( le ` K ) a /\ A. c e. B ( A. b e. A b ( le ` K ) c -> a ( le ` K ) c ) ) ) = ( iota_ a e. B ( A. b e. A -. a .< b /\ A. b e. B ( b .< a -> E. d e. A b .< d ) ) ) )
8 eqid
 |-  ( lub ` K ) = ( lub ` K )
9 biid
 |-  ( ( A. b e. A b ( le ` K ) a /\ A. c e. B ( A. b e. A b ( le ` K ) c -> a ( le ` K ) c ) ) <-> ( A. b e. A b ( le ` K ) a /\ A. c e. B ( A. b e. A b ( le ` K ) c -> a ( le ` K ) c ) ) )
10 1 5 8 9 3 4 lubval
 |-  ( ph -> ( ( lub ` K ) ` A ) = ( iota_ a e. B ( A. b e. A b ( le ` K ) a /\ A. c e. B ( A. b e. A b ( le ` K ) c -> a ( le ` K ) c ) ) ) )
11 1 5 2 tosso
 |-  ( K e. Toset -> ( K e. Toset <-> ( .< Or B /\ ( _I |` B ) C_ ( le ` K ) ) ) )
12 11 ibi
 |-  ( K e. Toset -> ( .< Or B /\ ( _I |` B ) C_ ( le ` K ) ) )
13 12 simpld
 |-  ( K e. Toset -> .< Or B )
14 id
 |-  ( .< Or B -> .< Or B )
15 14 supval2
 |-  ( .< Or B -> sup ( A , B , .< ) = ( iota_ a e. B ( A. b e. A -. a .< b /\ A. b e. B ( b .< a -> E. d e. A b .< d ) ) ) )
16 3 13 15 3syl
 |-  ( ph -> sup ( A , B , .< ) = ( iota_ a e. B ( A. b e. A -. a .< b /\ A. b e. B ( b .< a -> E. d e. A b .< d ) ) ) )
17 7 10 16 3eqtr4d
 |-  ( ph -> ( ( lub ` K ) ` A ) = sup ( A , B , .< ) )