Metamath Proof Explorer


Theorem toslub

Description: In a toset, the lowest upper bound lub , defined for partial orders is the supremum, sup ( A , B , .< ) , defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018) (Revised by Thierry Arnoux, 24-Sep-2018)

Ref Expression
Hypotheses toslub.b B = Base K
toslub.l < ˙ = < K
toslub.1 φ K Toset
toslub.2 φ A B
Assertion toslub φ lub K A = sup A B < ˙

Proof

Step Hyp Ref Expression
1 toslub.b B = Base K
2 toslub.l < ˙ = < K
3 toslub.1 φ K Toset
4 toslub.2 φ A B
5 eqid K = K
6 1 2 3 4 5 toslublem φ a B b A b K a c B b A b K c a K c b A ¬ a < ˙ b b B b < ˙ a d A b < ˙ d
7 6 riotabidva φ ι a B | b A b K a c B b A b K c a K c = ι a B | b A ¬ a < ˙ b b B b < ˙ a d A b < ˙ d
8 eqid lub K = lub K
9 biid b A b K a c B b A b K c a K c b A b K a c B b A b K c a K c
10 1 5 8 9 3 4 lubval φ lub K A = ι a B | b A b K a c B b A b K c a K c
11 1 5 2 tosso K Toset K Toset < ˙ Or B I B K
12 11 ibi K Toset < ˙ Or B I B K
13 12 simpld K Toset < ˙ Or B
14 id < ˙ Or B < ˙ Or B
15 14 supval2 < ˙ Or B sup A B < ˙ = ι a B | b A ¬ a < ˙ b b B b < ˙ a d A b < ˙ d
16 3 13 15 3syl φ sup A B < ˙ = ι a B | b A ¬ a < ˙ b b B b < ˙ a d A b < ˙ d
17 7 10 16 3eqtr4d φ lub K A = sup A B < ˙