Metamath Proof Explorer


Theorem tosglblem

Description: Lemma for tosglb and xrsclat . (Contributed by Thierry Arnoux, 17-Feb-2018) (Revised by NM, 15-Sep-2018)

Ref Expression
Hypotheses tosglb.b B=BaseK
tosglb.l <˙=<K
tosglb.1 φKToset
tosglb.2 φAB
tosglb.e ˙=K
Assertion tosglblem φaBbAa˙bcBbAc˙bc˙abA¬a<˙-1bbBb<˙-1adAb<˙-1d

Proof

Step Hyp Ref Expression
1 tosglb.b B=BaseK
2 tosglb.l <˙=<K
3 tosglb.1 φKToset
4 tosglb.2 φAB
5 tosglb.e ˙=K
6 3 ad2antrr φaBbAKToset
7 4 adantr φaBAB
8 7 sselda φaBbAbB
9 simplr φaBbAaB
10 1 5 2 tltnle KTosetbBaBb<˙a¬a˙b
11 6 8 9 10 syl3anc φaBbAb<˙a¬a˙b
12 11 con2bid φaBbAa˙b¬b<˙a
13 12 ralbidva φaBbAa˙bbA¬b<˙a
14 4 ad2antrr φcBbAAB
15 simpr φcBbAbA
16 14 15 sseldd φcBbAbB
17 1 5 2 tltnle KTosetbBcBb<˙c¬c˙b
18 3 17 syl3an1 φbBcBb<˙c¬c˙b
19 18 3com23 φcBbBb<˙c¬c˙b
20 19 3expa φcBbBb<˙c¬c˙b
21 20 con2bid φcBbBc˙b¬b<˙c
22 16 21 syldan φcBbAc˙b¬b<˙c
23 22 ralbidva φcBbAc˙bbA¬b<˙c
24 breq1 b=db<˙cd<˙c
25 24 notbid b=d¬b<˙c¬d<˙c
26 25 cbvralvw bA¬b<˙cdA¬d<˙c
27 ralnex dA¬d<˙c¬dAd<˙c
28 26 27 bitri bA¬b<˙c¬dAd<˙c
29 23 28 bitrdi φcBbAc˙b¬dAd<˙c
30 29 adantlr φaBcBbAc˙b¬dAd<˙c
31 3 ad2antrr φaBcBKToset
32 simplr φaBcBaB
33 simpr φaBcBcB
34 1 5 2 tltnle KTosetaBcBa<˙c¬c˙a
35 31 32 33 34 syl3anc φaBcBa<˙c¬c˙a
36 35 con2bid φaBcBc˙a¬a<˙c
37 30 36 imbi12d φaBcBbAc˙bc˙a¬dAd<˙c¬a<˙c
38 con34b a<˙cdAd<˙c¬dAd<˙c¬a<˙c
39 37 38 bitr4di φaBcBbAc˙bc˙aa<˙cdAd<˙c
40 39 ralbidva φaBcBbAc˙bc˙acBa<˙cdAd<˙c
41 breq2 b=ca<˙ba<˙c
42 breq2 b=cd<˙bd<˙c
43 42 rexbidv b=cdAd<˙bdAd<˙c
44 41 43 imbi12d b=ca<˙bdAd<˙ba<˙cdAd<˙c
45 44 cbvralvw bBa<˙bdAd<˙bcBa<˙cdAd<˙c
46 40 45 bitr4di φaBcBbAc˙bc˙abBa<˙bdAd<˙b
47 13 46 anbi12d φaBbAa˙bcBbAc˙bc˙abA¬b<˙abBa<˙bdAd<˙b
48 vex aV
49 vex bV
50 48 49 brcnv a<˙-1bb<˙a
51 50 notbii ¬a<˙-1b¬b<˙a
52 51 ralbii bA¬a<˙-1bbA¬b<˙a
53 49 48 brcnv b<˙-1aa<˙b
54 vex dV
55 49 54 brcnv b<˙-1dd<˙b
56 55 rexbii dAb<˙-1ddAd<˙b
57 53 56 imbi12i b<˙-1adAb<˙-1da<˙bdAd<˙b
58 57 ralbii bBb<˙-1adAb<˙-1dbBa<˙bdAd<˙b
59 52 58 anbi12i bA¬a<˙-1bbBb<˙-1adAb<˙-1dbA¬b<˙abBa<˙bdAd<˙b
60 47 59 bitr4di φaBbAa˙bcBbAc˙bc˙abA¬a<˙-1bbBb<˙-1adAb<˙-1d