| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tosglb.b |
|
| 2 |
|
tosglb.l |
|
| 3 |
|
tosglb.1 |
|
| 4 |
|
tosglb.2 |
|
| 5 |
|
tosglb.e |
|
| 6 |
3
|
ad2antrr |
|
| 7 |
4
|
adantr |
|
| 8 |
7
|
sselda |
|
| 9 |
|
simplr |
|
| 10 |
1 5 2
|
tltnle |
|
| 11 |
6 8 9 10
|
syl3anc |
|
| 12 |
11
|
con2bid |
|
| 13 |
12
|
ralbidva |
|
| 14 |
4
|
ad2antrr |
|
| 15 |
|
simpr |
|
| 16 |
14 15
|
sseldd |
|
| 17 |
1 5 2
|
tltnle |
|
| 18 |
3 17
|
syl3an1 |
|
| 19 |
18
|
3com23 |
|
| 20 |
19
|
3expa |
|
| 21 |
20
|
con2bid |
|
| 22 |
16 21
|
syldan |
|
| 23 |
22
|
ralbidva |
|
| 24 |
|
breq1 |
|
| 25 |
24
|
notbid |
|
| 26 |
25
|
cbvralvw |
|
| 27 |
|
ralnex |
|
| 28 |
26 27
|
bitri |
|
| 29 |
23 28
|
bitrdi |
|
| 30 |
29
|
adantlr |
|
| 31 |
3
|
ad2antrr |
|
| 32 |
|
simplr |
|
| 33 |
|
simpr |
|
| 34 |
1 5 2
|
tltnle |
|
| 35 |
31 32 33 34
|
syl3anc |
|
| 36 |
35
|
con2bid |
|
| 37 |
30 36
|
imbi12d |
|
| 38 |
|
con34b |
|
| 39 |
37 38
|
bitr4di |
|
| 40 |
39
|
ralbidva |
|
| 41 |
|
breq2 |
|
| 42 |
|
breq2 |
|
| 43 |
42
|
rexbidv |
|
| 44 |
41 43
|
imbi12d |
|
| 45 |
44
|
cbvralvw |
|
| 46 |
40 45
|
bitr4di |
|
| 47 |
13 46
|
anbi12d |
|
| 48 |
|
vex |
|
| 49 |
|
vex |
|
| 50 |
48 49
|
brcnv |
|
| 51 |
50
|
notbii |
|
| 52 |
51
|
ralbii |
|
| 53 |
49 48
|
brcnv |
|
| 54 |
|
vex |
|
| 55 |
49 54
|
brcnv |
|
| 56 |
55
|
rexbii |
|
| 57 |
53 56
|
imbi12i |
|
| 58 |
57
|
ralbii |
|
| 59 |
52 58
|
anbi12i |
|
| 60 |
47 59
|
bitr4di |
|