Metamath Proof Explorer


Theorem tosglb

Description: Same theorem as toslub , for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018) (Revised by AV, 28-Sep-2020)

Ref Expression
Hypotheses tosglb.b B = Base K
tosglb.l < ˙ = < K
tosglb.1 φ K Toset
tosglb.2 φ A B
Assertion tosglb φ glb K A = sup A B < ˙

Proof

Step Hyp Ref Expression
1 tosglb.b B = Base K
2 tosglb.l < ˙ = < K
3 tosglb.1 φ K Toset
4 tosglb.2 φ A B
5 eqid K = K
6 1 2 3 4 5 tosglblem φ a B b A a K b c B b A c K b c K a b A ¬ a < ˙ -1 b b B b < ˙ -1 a d A b < ˙ -1 d
7 6 riotabidva φ ι a B | b A a K b c B b A c K b c K a = ι a B | b A ¬ a < ˙ -1 b b B b < ˙ -1 a d A b < ˙ -1 d
8 eqid glb K = glb K
9 biid b A a K b c B b A c K b c K a b A a K b c B b A c K b c K a
10 1 5 8 9 3 4 glbval φ glb K A = ι a B | b A a K b c B b A c K b c K a
11 1 5 2 tosso K Toset K Toset < ˙ Or B I B K
12 11 ibi K Toset < ˙ Or B I B K
13 12 simpld K Toset < ˙ Or B
14 cnvso < ˙ Or B < ˙ -1 Or B
15 13 14 sylib K Toset < ˙ -1 Or B
16 id < ˙ -1 Or B < ˙ -1 Or B
17 16 supval2 < ˙ -1 Or B sup A B < ˙ -1 = ι a B | b A ¬ a < ˙ -1 b b B b < ˙ -1 a d A b < ˙ -1 d
18 3 15 17 3syl φ sup A B < ˙ -1 = ι a B | b A ¬ a < ˙ -1 b b B b < ˙ -1 a d A b < ˙ -1 d
19 7 10 18 3eqtr4d φ glb K A = sup A B < ˙ -1
20 df-inf sup A B < ˙ = sup A B < ˙ -1
21 20 eqcomi sup A B < ˙ -1 = sup A B < ˙
22 21 a1i φ sup A B < ˙ -1 = sup A B < ˙
23 19 22 eqtrd φ glb K A = sup A B < ˙