Metamath Proof Explorer


Theorem tosglb

Description: Same theorem as toslub , for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018) (Revised by AV, 28-Sep-2020)

Ref Expression
Hypotheses tosglb.b 𝐵 = ( Base ‘ 𝐾 )
tosglb.l < = ( lt ‘ 𝐾 )
tosglb.1 ( 𝜑𝐾 ∈ Toset )
tosglb.2 ( 𝜑𝐴𝐵 )
Assertion tosglb ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ 𝐴 ) = inf ( 𝐴 , 𝐵 , < ) )

Proof

Step Hyp Ref Expression
1 tosglb.b 𝐵 = ( Base ‘ 𝐾 )
2 tosglb.l < = ( lt ‘ 𝐾 )
3 tosglb.1 ( 𝜑𝐾 ∈ Toset )
4 tosglb.2 ( 𝜑𝐴𝐵 )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 1 2 3 4 5 tosglblem ( ( 𝜑𝑎𝐵 ) → ( ( ∀ 𝑏𝐴 𝑎 ( le ‘ 𝐾 ) 𝑏 ∧ ∀ 𝑐𝐵 ( ∀ 𝑏𝐴 𝑐 ( le ‘ 𝐾 ) 𝑏𝑐 ( le ‘ 𝐾 ) 𝑎 ) ) ↔ ( ∀ 𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏𝐵 ( 𝑏 < 𝑎 → ∃ 𝑑𝐴 𝑏 < 𝑑 ) ) ) )
7 6 riotabidva ( 𝜑 → ( 𝑎𝐵 ( ∀ 𝑏𝐴 𝑎 ( le ‘ 𝐾 ) 𝑏 ∧ ∀ 𝑐𝐵 ( ∀ 𝑏𝐴 𝑐 ( le ‘ 𝐾 ) 𝑏𝑐 ( le ‘ 𝐾 ) 𝑎 ) ) ) = ( 𝑎𝐵 ( ∀ 𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏𝐵 ( 𝑏 < 𝑎 → ∃ 𝑑𝐴 𝑏 < 𝑑 ) ) ) )
8 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
9 biid ( ( ∀ 𝑏𝐴 𝑎 ( le ‘ 𝐾 ) 𝑏 ∧ ∀ 𝑐𝐵 ( ∀ 𝑏𝐴 𝑐 ( le ‘ 𝐾 ) 𝑏𝑐 ( le ‘ 𝐾 ) 𝑎 ) ) ↔ ( ∀ 𝑏𝐴 𝑎 ( le ‘ 𝐾 ) 𝑏 ∧ ∀ 𝑐𝐵 ( ∀ 𝑏𝐴 𝑐 ( le ‘ 𝐾 ) 𝑏𝑐 ( le ‘ 𝐾 ) 𝑎 ) ) )
10 1 5 8 9 3 4 glbval ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ 𝐴 ) = ( 𝑎𝐵 ( ∀ 𝑏𝐴 𝑎 ( le ‘ 𝐾 ) 𝑏 ∧ ∀ 𝑐𝐵 ( ∀ 𝑏𝐴 𝑐 ( le ‘ 𝐾 ) 𝑏𝑐 ( le ‘ 𝐾 ) 𝑎 ) ) ) )
11 1 5 2 tosso ( 𝐾 ∈ Toset → ( 𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝐾 ) ) ) )
12 11 ibi ( 𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝐾 ) ) )
13 12 simpld ( 𝐾 ∈ Toset → < Or 𝐵 )
14 cnvso ( < Or 𝐵 < Or 𝐵 )
15 13 14 sylib ( 𝐾 ∈ Toset → < Or 𝐵 )
16 id ( < Or 𝐵 < Or 𝐵 )
17 16 supval2 ( < Or 𝐵 → sup ( 𝐴 , 𝐵 , < ) = ( 𝑎𝐵 ( ∀ 𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏𝐵 ( 𝑏 < 𝑎 → ∃ 𝑑𝐴 𝑏 < 𝑑 ) ) ) )
18 3 15 17 3syl ( 𝜑 → sup ( 𝐴 , 𝐵 , < ) = ( 𝑎𝐵 ( ∀ 𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏𝐵 ( 𝑏 < 𝑎 → ∃ 𝑑𝐴 𝑏 < 𝑑 ) ) ) )
19 7 10 18 3eqtr4d ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ 𝐴 ) = sup ( 𝐴 , 𝐵 , < ) )
20 df-inf inf ( 𝐴 , 𝐵 , < ) = sup ( 𝐴 , 𝐵 , < )
21 20 eqcomi sup ( 𝐴 , 𝐵 , < ) = inf ( 𝐴 , 𝐵 , < )
22 21 a1i ( 𝜑 → sup ( 𝐴 , 𝐵 , < ) = inf ( 𝐴 , 𝐵 , < ) )
23 19 22 eqtrd ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ 𝐴 ) = inf ( 𝐴 , 𝐵 , < ) )