| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tosglb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
tosglb.l |
⊢ < = ( lt ‘ 𝐾 ) |
| 3 |
|
tosglb.1 |
⊢ ( 𝜑 → 𝐾 ∈ Toset ) |
| 4 |
|
tosglb.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 6 |
1 2 3 4 5
|
tosglblem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( ∀ 𝑏 ∈ 𝐴 𝑎 ( le ‘ 𝐾 ) 𝑏 ∧ ∀ 𝑐 ∈ 𝐵 ( ∀ 𝑏 ∈ 𝐴 𝑐 ( le ‘ 𝐾 ) 𝑏 → 𝑐 ( le ‘ 𝐾 ) 𝑎 ) ) ↔ ( ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 ◡ < 𝑏 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 ◡ < 𝑎 → ∃ 𝑑 ∈ 𝐴 𝑏 ◡ < 𝑑 ) ) ) ) |
| 7 |
6
|
riotabidva |
⊢ ( 𝜑 → ( ℩ 𝑎 ∈ 𝐵 ( ∀ 𝑏 ∈ 𝐴 𝑎 ( le ‘ 𝐾 ) 𝑏 ∧ ∀ 𝑐 ∈ 𝐵 ( ∀ 𝑏 ∈ 𝐴 𝑐 ( le ‘ 𝐾 ) 𝑏 → 𝑐 ( le ‘ 𝐾 ) 𝑎 ) ) ) = ( ℩ 𝑎 ∈ 𝐵 ( ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 ◡ < 𝑏 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 ◡ < 𝑎 → ∃ 𝑑 ∈ 𝐴 𝑏 ◡ < 𝑑 ) ) ) ) |
| 8 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
| 9 |
|
biid |
⊢ ( ( ∀ 𝑏 ∈ 𝐴 𝑎 ( le ‘ 𝐾 ) 𝑏 ∧ ∀ 𝑐 ∈ 𝐵 ( ∀ 𝑏 ∈ 𝐴 𝑐 ( le ‘ 𝐾 ) 𝑏 → 𝑐 ( le ‘ 𝐾 ) 𝑎 ) ) ↔ ( ∀ 𝑏 ∈ 𝐴 𝑎 ( le ‘ 𝐾 ) 𝑏 ∧ ∀ 𝑐 ∈ 𝐵 ( ∀ 𝑏 ∈ 𝐴 𝑐 ( le ‘ 𝐾 ) 𝑏 → 𝑐 ( le ‘ 𝐾 ) 𝑎 ) ) ) |
| 10 |
1 5 8 9 3 4
|
glbval |
⊢ ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ 𝐴 ) = ( ℩ 𝑎 ∈ 𝐵 ( ∀ 𝑏 ∈ 𝐴 𝑎 ( le ‘ 𝐾 ) 𝑏 ∧ ∀ 𝑐 ∈ 𝐵 ( ∀ 𝑏 ∈ 𝐴 𝑐 ( le ‘ 𝐾 ) 𝑏 → 𝑐 ( le ‘ 𝐾 ) 𝑎 ) ) ) ) |
| 11 |
1 5 2
|
tosso |
⊢ ( 𝐾 ∈ Toset → ( 𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝐾 ) ) ) ) |
| 12 |
11
|
ibi |
⊢ ( 𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝐾 ) ) ) |
| 13 |
12
|
simpld |
⊢ ( 𝐾 ∈ Toset → < Or 𝐵 ) |
| 14 |
|
cnvso |
⊢ ( < Or 𝐵 ↔ ◡ < Or 𝐵 ) |
| 15 |
13 14
|
sylib |
⊢ ( 𝐾 ∈ Toset → ◡ < Or 𝐵 ) |
| 16 |
|
id |
⊢ ( ◡ < Or 𝐵 → ◡ < Or 𝐵 ) |
| 17 |
16
|
supval2 |
⊢ ( ◡ < Or 𝐵 → sup ( 𝐴 , 𝐵 , ◡ < ) = ( ℩ 𝑎 ∈ 𝐵 ( ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 ◡ < 𝑏 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 ◡ < 𝑎 → ∃ 𝑑 ∈ 𝐴 𝑏 ◡ < 𝑑 ) ) ) ) |
| 18 |
3 15 17
|
3syl |
⊢ ( 𝜑 → sup ( 𝐴 , 𝐵 , ◡ < ) = ( ℩ 𝑎 ∈ 𝐵 ( ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 ◡ < 𝑏 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 ◡ < 𝑎 → ∃ 𝑑 ∈ 𝐴 𝑏 ◡ < 𝑑 ) ) ) ) |
| 19 |
7 10 18
|
3eqtr4d |
⊢ ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ 𝐴 ) = sup ( 𝐴 , 𝐵 , ◡ < ) ) |
| 20 |
|
df-inf |
⊢ inf ( 𝐴 , 𝐵 , < ) = sup ( 𝐴 , 𝐵 , ◡ < ) |
| 21 |
20
|
eqcomi |
⊢ sup ( 𝐴 , 𝐵 , ◡ < ) = inf ( 𝐴 , 𝐵 , < ) |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → sup ( 𝐴 , 𝐵 , ◡ < ) = inf ( 𝐴 , 𝐵 , < ) ) |
| 23 |
19 22
|
eqtrd |
⊢ ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ 𝐴 ) = inf ( 𝐴 , 𝐵 , < ) ) |