Metamath Proof Explorer


Theorem xrsclat

Description: The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018)

Ref Expression
Assertion xrsclat 𝑠 * CLat

Proof

Step Hyp Ref Expression
1 xrstos 𝑠 * Toset
2 tospos 𝑠 * Toset 𝑠 * Poset
3 1 2 ax-mp 𝑠 * Poset
4 xrsbas * = Base 𝑠 *
5 xrsle = 𝑠 *
6 eqid lub 𝑠 * = lub 𝑠 *
7 biid b x b a c * b x b c a c b x b a c * b x b c a c
8 4 5 6 7 2 lubdm 𝑠 * Toset dom lub 𝑠 * = x 𝒫 * | ∃! a * b x b a c * b x b c a c
9 1 8 ax-mp dom lub 𝑠 * = x 𝒫 * | ∃! a * b x b a c * b x b c a c
10 rabid2 𝒫 * = x 𝒫 * | ∃! a * b x b a c * b x b c a c x 𝒫 * ∃! a * b x b a c * b x b c a c
11 velpw x 𝒫 * x *
12 xrltso < Or *
13 12 a1i x * < Or *
14 xrsupss x * a * b x ¬ a < b b * b < a d x b < d
15 13 14 supeu x * ∃! a * b x ¬ a < b b * b < a d x b < d
16 xrslt < = < 𝑠 *
17 1 a1i x * 𝑠 * Toset
18 id x * x *
19 4 16 17 18 5 toslublem x * a * b x b a c * b x b c a c b x ¬ a < b b * b < a d x b < d
20 19 reubidva x * ∃! a * b x b a c * b x b c a c ∃! a * b x ¬ a < b b * b < a d x b < d
21 15 20 mpbird x * ∃! a * b x b a c * b x b c a c
22 11 21 sylbi x 𝒫 * ∃! a * b x b a c * b x b c a c
23 10 22 mprgbir 𝒫 * = x 𝒫 * | ∃! a * b x b a c * b x b c a c
24 9 23 eqtr4i dom lub 𝑠 * = 𝒫 *
25 eqid glb 𝑠 * = glb 𝑠 *
26 biid b x a b c * b x c b c a b x a b c * b x c b c a
27 4 5 25 26 2 glbdm 𝑠 * Toset dom glb 𝑠 * = x 𝒫 * | ∃! a * b x a b c * b x c b c a
28 1 27 ax-mp dom glb 𝑠 * = x 𝒫 * | ∃! a * b x a b c * b x c b c a
29 rabid2 𝒫 * = x 𝒫 * | ∃! a * b x a b c * b x c b c a x 𝒫 * ∃! a * b x a b c * b x c b c a
30 cnvso < Or * < -1 Or *
31 12 30 mpbi < -1 Or *
32 31 a1i x * < -1 Or *
33 xrinfmss2 x * a * b x ¬ a < -1 b b * b < -1 a d x b < -1 d
34 32 33 supeu x * ∃! a * b x ¬ a < -1 b b * b < -1 a d x b < -1 d
35 4 16 17 18 5 tosglblem x * a * b x a b c * b x c b c a b x ¬ a < -1 b b * b < -1 a d x b < -1 d
36 35 reubidva x * ∃! a * b x a b c * b x c b c a ∃! a * b x ¬ a < -1 b b * b < -1 a d x b < -1 d
37 34 36 mpbird x * ∃! a * b x a b c * b x c b c a
38 11 37 sylbi x 𝒫 * ∃! a * b x a b c * b x c b c a
39 29 38 mprgbir 𝒫 * = x 𝒫 * | ∃! a * b x a b c * b x c b c a
40 28 39 eqtr4i dom glb 𝑠 * = 𝒫 *
41 24 40 pm3.2i dom lub 𝑠 * = 𝒫 * dom glb 𝑠 * = 𝒫 *
42 4 6 25 isclat 𝑠 * CLat 𝑠 * Poset dom lub 𝑠 * = 𝒫 * dom glb 𝑠 * = 𝒫 *
43 3 41 42 mpbir2an 𝑠 * CLat