Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Extensible Structures
Extended reals Structure - misc additions
xrstos
Next ⟩
xrsclat
Metamath Proof Explorer
Ascii
Unicode
Theorem
xrstos
Description:
The extended real numbers form a toset.
(Contributed by
Thierry Arnoux
, 15-Feb-2018)
Ref
Expression
Assertion
xrstos
⊢
ℝ
𝑠
*
∈
Toset
Proof
Step
Hyp
Ref
Expression
1
xrsex
⊢
ℝ
𝑠
*
∈
V
2
xrsbas
⊢
ℝ
*
=
Base
ℝ
𝑠
*
3
xrsle
⊢
≤
=
≤
ℝ
𝑠
*
4
xrleid
⊢
x
∈
ℝ
*
→
x
≤
x
5
xrletri3
⊢
x
∈
ℝ
*
∧
y
∈
ℝ
*
→
x
=
y
↔
x
≤
y
∧
y
≤
x
6
5
biimprd
⊢
x
∈
ℝ
*
∧
y
∈
ℝ
*
→
x
≤
y
∧
y
≤
x
→
x
=
y
7
xrletr
⊢
x
∈
ℝ
*
∧
y
∈
ℝ
*
∧
z
∈
ℝ
*
→
x
≤
y
∧
y
≤
z
→
x
≤
z
8
1
2
3
4
6
7
isposi
⊢
ℝ
𝑠
*
∈
Poset
9
xrletri
⊢
x
∈
ℝ
*
∧
y
∈
ℝ
*
→
x
≤
y
∨
y
≤
x
10
9
rgen2
⊢
∀
x
∈
ℝ
*
∀
y
∈
ℝ
*
x
≤
y
∨
y
≤
x
11
2
3
istos
⊢
ℝ
𝑠
*
∈
Toset
↔
ℝ
𝑠
*
∈
Poset
∧
∀
x
∈
ℝ
*
∀
y
∈
ℝ
*
x
≤
y
∨
y
≤
x
12
8
10
11
mpbir2an
⊢
ℝ
𝑠
*
∈
Toset