Metamath Proof Explorer


Theorem xrinfmss2

Description: Any subset of extended reals has an infimum. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Assertion xrinfmss2 A*x*yA¬x<-1yy*y<-1xzAy<-1z

Proof

Step Hyp Ref Expression
1 xrinfmss A*x*yA¬y<xy*x<yzAz<y
2 vex xV
3 vex yV
4 2 3 brcnv x<-1yy<x
5 4 notbii ¬x<-1y¬y<x
6 5 ralbii yA¬x<-1yyA¬y<x
7 3 2 brcnv y<-1xx<y
8 vex zV
9 3 8 brcnv y<-1zz<y
10 9 rexbii zAy<-1zzAz<y
11 7 10 imbi12i y<-1xzAy<-1zx<yzAz<y
12 11 ralbii y*y<-1xzAy<-1zy*x<yzAz<y
13 6 12 anbi12i yA¬x<-1yy*y<-1xzAy<-1zyA¬y<xy*x<yzAz<y
14 13 rexbii x*yA¬x<-1yy*y<-1xzAy<-1zx*yA¬y<xy*x<yzAz<y
15 1 14 sylibr A*x*yA¬x<-1yy*y<-1xzAy<-1z