Step |
Hyp |
Ref |
Expression |
1 |
|
xrstos |
⊢ ℝ*𝑠 ∈ Toset |
2 |
|
tospos |
⊢ ( ℝ*𝑠 ∈ Toset → ℝ*𝑠 ∈ Poset ) |
3 |
1 2
|
ax-mp |
⊢ ℝ*𝑠 ∈ Poset |
4 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
5 |
|
xrsle |
⊢ ≤ = ( le ‘ ℝ*𝑠 ) |
6 |
|
eqid |
⊢ ( lub ‘ ℝ*𝑠 ) = ( lub ‘ ℝ*𝑠 ) |
7 |
|
biid |
⊢ ( ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 ) ) ) |
8 |
4 5 6 7 2
|
lubdm |
⊢ ( ℝ*𝑠 ∈ Toset → dom ( lub ‘ ℝ*𝑠 ) = { 𝑥 ∈ 𝒫 ℝ* ∣ ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 ) ) } ) |
9 |
1 8
|
ax-mp |
⊢ dom ( lub ‘ ℝ*𝑠 ) = { 𝑥 ∈ 𝒫 ℝ* ∣ ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 ) ) } |
10 |
|
rabid2 |
⊢ ( 𝒫 ℝ* = { 𝑥 ∈ 𝒫 ℝ* ∣ ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 ) ) } ↔ ∀ 𝑥 ∈ 𝒫 ℝ* ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 ) ) ) |
11 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 ℝ* ↔ 𝑥 ⊆ ℝ* ) |
12 |
|
xrltso |
⊢ < Or ℝ* |
13 |
12
|
a1i |
⊢ ( 𝑥 ⊆ ℝ* → < Or ℝ* ) |
14 |
|
xrsupss |
⊢ ( 𝑥 ⊆ ℝ* → ∃ 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 < 𝑎 → ∃ 𝑑 ∈ 𝑥 𝑏 < 𝑑 ) ) ) |
15 |
13 14
|
supeu |
⊢ ( 𝑥 ⊆ ℝ* → ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 < 𝑎 → ∃ 𝑑 ∈ 𝑥 𝑏 < 𝑑 ) ) ) |
16 |
|
xrslt |
⊢ < = ( lt ‘ ℝ*𝑠 ) |
17 |
1
|
a1i |
⊢ ( 𝑥 ⊆ ℝ* → ℝ*𝑠 ∈ Toset ) |
18 |
|
id |
⊢ ( 𝑥 ⊆ ℝ* → 𝑥 ⊆ ℝ* ) |
19 |
4 16 17 18 5
|
toslublem |
⊢ ( ( 𝑥 ⊆ ℝ* ∧ 𝑎 ∈ ℝ* ) → ( ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ 𝑥 ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 < 𝑎 → ∃ 𝑑 ∈ 𝑥 𝑏 < 𝑑 ) ) ) ) |
20 |
19
|
reubidva |
⊢ ( 𝑥 ⊆ ℝ* → ( ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 ) ) ↔ ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 < 𝑎 → ∃ 𝑑 ∈ 𝑥 𝑏 < 𝑑 ) ) ) ) |
21 |
15 20
|
mpbird |
⊢ ( 𝑥 ⊆ ℝ* → ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 ) ) ) |
22 |
11 21
|
sylbi |
⊢ ( 𝑥 ∈ 𝒫 ℝ* → ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 ) ) ) |
23 |
10 22
|
mprgbir |
⊢ 𝒫 ℝ* = { 𝑥 ∈ 𝒫 ℝ* ∣ ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑎 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 ) ) } |
24 |
9 23
|
eqtr4i |
⊢ dom ( lub ‘ ℝ*𝑠 ) = 𝒫 ℝ* |
25 |
|
eqid |
⊢ ( glb ‘ ℝ*𝑠 ) = ( glb ‘ ℝ*𝑠 ) |
26 |
|
biid |
⊢ ( ( ∀ 𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎 ) ) ↔ ( ∀ 𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎 ) ) ) |
27 |
4 5 25 26 2
|
glbdm |
⊢ ( ℝ*𝑠 ∈ Toset → dom ( glb ‘ ℝ*𝑠 ) = { 𝑥 ∈ 𝒫 ℝ* ∣ ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎 ) ) } ) |
28 |
1 27
|
ax-mp |
⊢ dom ( glb ‘ ℝ*𝑠 ) = { 𝑥 ∈ 𝒫 ℝ* ∣ ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎 ) ) } |
29 |
|
rabid2 |
⊢ ( 𝒫 ℝ* = { 𝑥 ∈ 𝒫 ℝ* ∣ ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎 ) ) } ↔ ∀ 𝑥 ∈ 𝒫 ℝ* ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎 ) ) ) |
30 |
|
cnvso |
⊢ ( < Or ℝ* ↔ ◡ < Or ℝ* ) |
31 |
12 30
|
mpbi |
⊢ ◡ < Or ℝ* |
32 |
31
|
a1i |
⊢ ( 𝑥 ⊆ ℝ* → ◡ < Or ℝ* ) |
33 |
|
xrinfmss2 |
⊢ ( 𝑥 ⊆ ℝ* → ∃ 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 ¬ 𝑎 ◡ < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 ◡ < 𝑎 → ∃ 𝑑 ∈ 𝑥 𝑏 ◡ < 𝑑 ) ) ) |
34 |
32 33
|
supeu |
⊢ ( 𝑥 ⊆ ℝ* → ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 ¬ 𝑎 ◡ < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 ◡ < 𝑎 → ∃ 𝑑 ∈ 𝑥 𝑏 ◡ < 𝑑 ) ) ) |
35 |
4 16 17 18 5
|
tosglblem |
⊢ ( ( 𝑥 ⊆ ℝ* ∧ 𝑎 ∈ ℝ* ) → ( ( ∀ 𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎 ) ) ↔ ( ∀ 𝑏 ∈ 𝑥 ¬ 𝑎 ◡ < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 ◡ < 𝑎 → ∃ 𝑑 ∈ 𝑥 𝑏 ◡ < 𝑑 ) ) ) ) |
36 |
35
|
reubidva |
⊢ ( 𝑥 ⊆ ℝ* → ( ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎 ) ) ↔ ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 ¬ 𝑎 ◡ < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 ◡ < 𝑎 → ∃ 𝑑 ∈ 𝑥 𝑏 ◡ < 𝑑 ) ) ) ) |
37 |
34 36
|
mpbird |
⊢ ( 𝑥 ⊆ ℝ* → ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎 ) ) ) |
38 |
11 37
|
sylbi |
⊢ ( 𝑥 ∈ 𝒫 ℝ* → ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎 ) ) ) |
39 |
29 38
|
mprgbir |
⊢ 𝒫 ℝ* = { 𝑥 ∈ 𝒫 ℝ* ∣ ∃! 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑎 ≤ 𝑏 ∧ ∀ 𝑐 ∈ ℝ* ( ∀ 𝑏 ∈ 𝑥 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎 ) ) } |
40 |
28 39
|
eqtr4i |
⊢ dom ( glb ‘ ℝ*𝑠 ) = 𝒫 ℝ* |
41 |
24 40
|
pm3.2i |
⊢ ( dom ( lub ‘ ℝ*𝑠 ) = 𝒫 ℝ* ∧ dom ( glb ‘ ℝ*𝑠 ) = 𝒫 ℝ* ) |
42 |
4 6 25
|
isclat |
⊢ ( ℝ*𝑠 ∈ CLat ↔ ( ℝ*𝑠 ∈ Poset ∧ ( dom ( lub ‘ ℝ*𝑠 ) = 𝒫 ℝ* ∧ dom ( glb ‘ ℝ*𝑠 ) = 𝒫 ℝ* ) ) ) |
43 |
3 41 42
|
mpbir2an |
⊢ ℝ*𝑠 ∈ CLat |