Metamath Proof Explorer


Theorem xrsp0

Description: The poset 0 of the extended real numbers is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018) (Proof shortened by AV, 28-Sep-2020)

Ref Expression
Assertion xrsp0 -∞ = ( 0. ‘ ℝ*𝑠 )

Proof

Step Hyp Ref Expression
1 xrsex *𝑠 ∈ V
2 xrsbas * = ( Base ‘ ℝ*𝑠 )
3 eqid ( glb ‘ ℝ*𝑠 ) = ( glb ‘ ℝ*𝑠 )
4 eqid ( 0. ‘ ℝ*𝑠 ) = ( 0. ‘ ℝ*𝑠 )
5 2 3 4 p0val ( ℝ*𝑠 ∈ V → ( 0. ‘ ℝ*𝑠 ) = ( ( glb ‘ ℝ*𝑠 ) ‘ ℝ* ) )
6 1 5 ax-mp ( 0. ‘ ℝ*𝑠 ) = ( ( glb ‘ ℝ*𝑠 ) ‘ ℝ* )
7 ssid * ⊆ ℝ*
8 xrslt < = ( lt ‘ ℝ*𝑠 )
9 xrstos *𝑠 ∈ Toset
10 9 a1i ( ℝ* ⊆ ℝ* → ℝ*𝑠 ∈ Toset )
11 id ( ℝ* ⊆ ℝ* → ℝ* ⊆ ℝ* )
12 2 8 10 11 tosglb ( ℝ* ⊆ ℝ* → ( ( glb ‘ ℝ*𝑠 ) ‘ ℝ* ) = inf ( ℝ* , ℝ* , < ) )
13 7 12 ax-mp ( ( glb ‘ ℝ*𝑠 ) ‘ ℝ* ) = inf ( ℝ* , ℝ* , < )
14 xrinfm inf ( ℝ* , ℝ* , < ) = -∞
15 6 13 14 3eqtrri -∞ = ( 0. ‘ ℝ*𝑠 )