| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrsex |
|- RR*s e. _V |
| 2 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
| 3 |
|
eqid |
|- ( glb ` RR*s ) = ( glb ` RR*s ) |
| 4 |
|
eqid |
|- ( 0. ` RR*s ) = ( 0. ` RR*s ) |
| 5 |
2 3 4
|
p0val |
|- ( RR*s e. _V -> ( 0. ` RR*s ) = ( ( glb ` RR*s ) ` RR* ) ) |
| 6 |
1 5
|
ax-mp |
|- ( 0. ` RR*s ) = ( ( glb ` RR*s ) ` RR* ) |
| 7 |
|
ssid |
|- RR* C_ RR* |
| 8 |
|
xrslt |
|- < = ( lt ` RR*s ) |
| 9 |
|
xrstos |
|- RR*s e. Toset |
| 10 |
9
|
a1i |
|- ( RR* C_ RR* -> RR*s e. Toset ) |
| 11 |
|
id |
|- ( RR* C_ RR* -> RR* C_ RR* ) |
| 12 |
2 8 10 11
|
tosglb |
|- ( RR* C_ RR* -> ( ( glb ` RR*s ) ` RR* ) = inf ( RR* , RR* , < ) ) |
| 13 |
7 12
|
ax-mp |
|- ( ( glb ` RR*s ) ` RR* ) = inf ( RR* , RR* , < ) |
| 14 |
|
xrinfm |
|- inf ( RR* , RR* , < ) = -oo |
| 15 |
6 13 14
|
3eqtrri |
|- -oo = ( 0. ` RR*s ) |