Metamath Proof Explorer


Theorem xrsp0

Description: The poset 0 of the extended real numbers is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018) (Proof shortened by AV, 28-Sep-2020)

Ref Expression
Assertion xrsp0 −∞ = 0. 𝑠 *

Proof

Step Hyp Ref Expression
1 xrsex 𝑠 * V
2 xrsbas * = Base 𝑠 *
3 eqid glb 𝑠 * = glb 𝑠 *
4 eqid 0. 𝑠 * = 0. 𝑠 *
5 2 3 4 p0val 𝑠 * V 0. 𝑠 * = glb 𝑠 * *
6 1 5 ax-mp 0. 𝑠 * = glb 𝑠 * *
7 ssid * *
8 xrslt < = < 𝑠 *
9 xrstos 𝑠 * Toset
10 9 a1i * * 𝑠 * Toset
11 id * * * *
12 2 8 10 11 tosglb * * glb 𝑠 * * = sup * * <
13 7 12 ax-mp glb 𝑠 * * = sup * * <
14 xrinfm sup * * < = −∞
15 6 13 14 3eqtrri −∞ = 0. 𝑠 *