Metamath Proof Explorer


Theorem xrsp1

Description: The poset 1 of the extended real numbers is plus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018)

Ref Expression
Assertion xrsp1 +∞ = 1. 𝑠 *

Proof

Step Hyp Ref Expression
1 xrsex 𝑠 * V
2 xrsbas * = Base 𝑠 *
3 eqid lub 𝑠 * = lub 𝑠 *
4 eqid 1. 𝑠 * = 1. 𝑠 *
5 2 3 4 p1val 𝑠 * V 1. 𝑠 * = lub 𝑠 * *
6 1 5 ax-mp 1. 𝑠 * = lub 𝑠 * *
7 ssid * *
8 xrslt < = < 𝑠 *
9 xrstos 𝑠 * Toset
10 9 a1i * * 𝑠 * Toset
11 id * * * *
12 2 8 10 11 toslub * * lub 𝑠 * * = sup * * <
13 7 12 ax-mp lub 𝑠 * * = sup * * <
14 xrsup sup * * < = +∞
15 6 13 14 3eqtrri +∞ = 1. 𝑠 *