| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrsex | ⊢ ℝ*𝑠  ∈  V | 
						
							| 2 |  | xrsbas | ⊢ ℝ*  =  ( Base ‘ ℝ*𝑠 ) | 
						
							| 3 |  | eqid | ⊢ ( lub ‘ ℝ*𝑠 )  =  ( lub ‘ ℝ*𝑠 ) | 
						
							| 4 |  | eqid | ⊢ ( 1. ‘ ℝ*𝑠 )  =  ( 1. ‘ ℝ*𝑠 ) | 
						
							| 5 | 2 3 4 | p1val | ⊢ ( ℝ*𝑠  ∈  V  →  ( 1. ‘ ℝ*𝑠 )  =  ( ( lub ‘ ℝ*𝑠 ) ‘ ℝ* ) ) | 
						
							| 6 | 1 5 | ax-mp | ⊢ ( 1. ‘ ℝ*𝑠 )  =  ( ( lub ‘ ℝ*𝑠 ) ‘ ℝ* ) | 
						
							| 7 |  | ssid | ⊢ ℝ*  ⊆  ℝ* | 
						
							| 8 |  | xrslt | ⊢  <   =  ( lt ‘ ℝ*𝑠 ) | 
						
							| 9 |  | xrstos | ⊢ ℝ*𝑠  ∈  Toset | 
						
							| 10 | 9 | a1i | ⊢ ( ℝ*  ⊆  ℝ*  →  ℝ*𝑠  ∈  Toset ) | 
						
							| 11 |  | id | ⊢ ( ℝ*  ⊆  ℝ*  →  ℝ*  ⊆  ℝ* ) | 
						
							| 12 | 2 8 10 11 | toslub | ⊢ ( ℝ*  ⊆  ℝ*  →  ( ( lub ‘ ℝ*𝑠 ) ‘ ℝ* )  =  sup ( ℝ* ,  ℝ* ,   <  ) ) | 
						
							| 13 | 7 12 | ax-mp | ⊢ ( ( lub ‘ ℝ*𝑠 ) ‘ ℝ* )  =  sup ( ℝ* ,  ℝ* ,   <  ) | 
						
							| 14 |  | xrsup | ⊢ sup ( ℝ* ,  ℝ* ,   <  )  =  +∞ | 
						
							| 15 | 6 13 14 | 3eqtrri | ⊢ +∞  =  ( 1. ‘ ℝ*𝑠 ) |