Metamath Proof Explorer


Theorem toslublem

Description: Lemma for toslub and xrsclat . (Contributed by Thierry Arnoux, 17-Feb-2018) (Revised by NM, 15-Sep-2018)

Ref Expression
Hypotheses toslub.b 𝐵 = ( Base ‘ 𝐾 )
toslub.l < = ( lt ‘ 𝐾 )
toslub.1 ( 𝜑𝐾 ∈ Toset )
toslub.2 ( 𝜑𝐴𝐵 )
toslub.e = ( le ‘ 𝐾 )
Assertion toslublem ( ( 𝜑𝑎𝐵 ) → ( ( ∀ 𝑏𝐴 𝑏 𝑎 ∧ ∀ 𝑐𝐵 ( ∀ 𝑏𝐴 𝑏 𝑐𝑎 𝑐 ) ) ↔ ( ∀ 𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏𝐵 ( 𝑏 < 𝑎 → ∃ 𝑑𝐴 𝑏 < 𝑑 ) ) ) )

Proof

Step Hyp Ref Expression
1 toslub.b 𝐵 = ( Base ‘ 𝐾 )
2 toslub.l < = ( lt ‘ 𝐾 )
3 toslub.1 ( 𝜑𝐾 ∈ Toset )
4 toslub.2 ( 𝜑𝐴𝐵 )
5 toslub.e = ( le ‘ 𝐾 )
6 3 ad2antrr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐴 ) → 𝐾 ∈ Toset )
7 simplr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐴 ) → 𝑎𝐵 )
8 4 adantr ( ( 𝜑𝑎𝐵 ) → 𝐴𝐵 )
9 8 sselda ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐴 ) → 𝑏𝐵 )
10 1 5 2 tltnle ( ( 𝐾 ∈ Toset ∧ 𝑎𝐵𝑏𝐵 ) → ( 𝑎 < 𝑏 ↔ ¬ 𝑏 𝑎 ) )
11 6 7 9 10 syl3anc ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐴 ) → ( 𝑎 < 𝑏 ↔ ¬ 𝑏 𝑎 ) )
12 11 con2bid ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐴 ) → ( 𝑏 𝑎 ↔ ¬ 𝑎 < 𝑏 ) )
13 12 ralbidva ( ( 𝜑𝑎𝐵 ) → ( ∀ 𝑏𝐴 𝑏 𝑎 ↔ ∀ 𝑏𝐴 ¬ 𝑎 < 𝑏 ) )
14 4 ad2antrr ( ( ( 𝜑𝑐𝐵 ) ∧ 𝑏𝐴 ) → 𝐴𝐵 )
15 simpr ( ( ( 𝜑𝑐𝐵 ) ∧ 𝑏𝐴 ) → 𝑏𝐴 )
16 14 15 sseldd ( ( ( 𝜑𝑐𝐵 ) ∧ 𝑏𝐴 ) → 𝑏𝐵 )
17 1 5 2 tltnle ( ( 𝐾 ∈ Toset ∧ 𝑐𝐵𝑏𝐵 ) → ( 𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐 ) )
18 3 17 syl3an1 ( ( 𝜑𝑐𝐵𝑏𝐵 ) → ( 𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐 ) )
19 18 3expa ( ( ( 𝜑𝑐𝐵 ) ∧ 𝑏𝐵 ) → ( 𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐 ) )
20 19 con2bid ( ( ( 𝜑𝑐𝐵 ) ∧ 𝑏𝐵 ) → ( 𝑏 𝑐 ↔ ¬ 𝑐 < 𝑏 ) )
21 16 20 syldan ( ( ( 𝜑𝑐𝐵 ) ∧ 𝑏𝐴 ) → ( 𝑏 𝑐 ↔ ¬ 𝑐 < 𝑏 ) )
22 21 ralbidva ( ( 𝜑𝑐𝐵 ) → ( ∀ 𝑏𝐴 𝑏 𝑐 ↔ ∀ 𝑏𝐴 ¬ 𝑐 < 𝑏 ) )
23 breq2 ( 𝑏 = 𝑑 → ( 𝑐 < 𝑏𝑐 < 𝑑 ) )
24 23 notbid ( 𝑏 = 𝑑 → ( ¬ 𝑐 < 𝑏 ↔ ¬ 𝑐 < 𝑑 ) )
25 24 cbvralvw ( ∀ 𝑏𝐴 ¬ 𝑐 < 𝑏 ↔ ∀ 𝑑𝐴 ¬ 𝑐 < 𝑑 )
26 ralnex ( ∀ 𝑑𝐴 ¬ 𝑐 < 𝑑 ↔ ¬ ∃ 𝑑𝐴 𝑐 < 𝑑 )
27 25 26 bitri ( ∀ 𝑏𝐴 ¬ 𝑐 < 𝑏 ↔ ¬ ∃ 𝑑𝐴 𝑐 < 𝑑 )
28 22 27 bitrdi ( ( 𝜑𝑐𝐵 ) → ( ∀ 𝑏𝐴 𝑏 𝑐 ↔ ¬ ∃ 𝑑𝐴 𝑐 < 𝑑 ) )
29 28 adantlr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑐𝐵 ) → ( ∀ 𝑏𝐴 𝑏 𝑐 ↔ ¬ ∃ 𝑑𝐴 𝑐 < 𝑑 ) )
30 3 ad2antrr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑐𝐵 ) → 𝐾 ∈ Toset )
31 simpr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑐𝐵 ) → 𝑐𝐵 )
32 simplr ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑐𝐵 ) → 𝑎𝐵 )
33 1 5 2 tltnle ( ( 𝐾 ∈ Toset ∧ 𝑐𝐵𝑎𝐵 ) → ( 𝑐 < 𝑎 ↔ ¬ 𝑎 𝑐 ) )
34 30 31 32 33 syl3anc ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑐𝐵 ) → ( 𝑐 < 𝑎 ↔ ¬ 𝑎 𝑐 ) )
35 34 con2bid ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑐𝐵 ) → ( 𝑎 𝑐 ↔ ¬ 𝑐 < 𝑎 ) )
36 29 35 imbi12d ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑐𝐵 ) → ( ( ∀ 𝑏𝐴 𝑏 𝑐𝑎 𝑐 ) ↔ ( ¬ ∃ 𝑑𝐴 𝑐 < 𝑑 → ¬ 𝑐 < 𝑎 ) ) )
37 con34b ( ( 𝑐 < 𝑎 → ∃ 𝑑𝐴 𝑐 < 𝑑 ) ↔ ( ¬ ∃ 𝑑𝐴 𝑐 < 𝑑 → ¬ 𝑐 < 𝑎 ) )
38 36 37 bitr4di ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑐𝐵 ) → ( ( ∀ 𝑏𝐴 𝑏 𝑐𝑎 𝑐 ) ↔ ( 𝑐 < 𝑎 → ∃ 𝑑𝐴 𝑐 < 𝑑 ) ) )
39 38 ralbidva ( ( 𝜑𝑎𝐵 ) → ( ∀ 𝑐𝐵 ( ∀ 𝑏𝐴 𝑏 𝑐𝑎 𝑐 ) ↔ ∀ 𝑐𝐵 ( 𝑐 < 𝑎 → ∃ 𝑑𝐴 𝑐 < 𝑑 ) ) )
40 breq1 ( 𝑏 = 𝑐 → ( 𝑏 < 𝑎𝑐 < 𝑎 ) )
41 breq1 ( 𝑏 = 𝑐 → ( 𝑏 < 𝑑𝑐 < 𝑑 ) )
42 41 rexbidv ( 𝑏 = 𝑐 → ( ∃ 𝑑𝐴 𝑏 < 𝑑 ↔ ∃ 𝑑𝐴 𝑐 < 𝑑 ) )
43 40 42 imbi12d ( 𝑏 = 𝑐 → ( ( 𝑏 < 𝑎 → ∃ 𝑑𝐴 𝑏 < 𝑑 ) ↔ ( 𝑐 < 𝑎 → ∃ 𝑑𝐴 𝑐 < 𝑑 ) ) )
44 43 cbvralvw ( ∀ 𝑏𝐵 ( 𝑏 < 𝑎 → ∃ 𝑑𝐴 𝑏 < 𝑑 ) ↔ ∀ 𝑐𝐵 ( 𝑐 < 𝑎 → ∃ 𝑑𝐴 𝑐 < 𝑑 ) )
45 39 44 bitr4di ( ( 𝜑𝑎𝐵 ) → ( ∀ 𝑐𝐵 ( ∀ 𝑏𝐴 𝑏 𝑐𝑎 𝑐 ) ↔ ∀ 𝑏𝐵 ( 𝑏 < 𝑎 → ∃ 𝑑𝐴 𝑏 < 𝑑 ) ) )
46 13 45 anbi12d ( ( 𝜑𝑎𝐵 ) → ( ( ∀ 𝑏𝐴 𝑏 𝑎 ∧ ∀ 𝑐𝐵 ( ∀ 𝑏𝐴 𝑏 𝑐𝑎 𝑐 ) ) ↔ ( ∀ 𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏𝐵 ( 𝑏 < 𝑎 → ∃ 𝑑𝐴 𝑏 < 𝑑 ) ) ) )