Metamath Proof Explorer


Theorem trclfvg

Description: The value of the transitive closure of a relation is a superset or (for proper classes) the empty set. (Contributed by RP, 8-May-2020)

Ref Expression
Assertion trclfvg
|- ( R C_ ( t+ ` R ) \/ ( t+ ` R ) = (/) )

Proof

Step Hyp Ref Expression
1 exmid
 |-  ( R e. _V \/ -. R e. _V )
2 trclfvlb
 |-  ( R e. _V -> R C_ ( t+ ` R ) )
3 fvprc
 |-  ( -. R e. _V -> ( t+ ` R ) = (/) )
4 2 3 orim12i
 |-  ( ( R e. _V \/ -. R e. _V ) -> ( R C_ ( t+ ` R ) \/ ( t+ ` R ) = (/) ) )
5 1 4 ax-mp
 |-  ( R C_ ( t+ ` R ) \/ ( t+ ` R ) = (/) )