Description: The value of the transitive closure of a relation is a superset or (for proper classes) the empty set. (Contributed by RP, 8-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trclfvg | ⊢ ( 𝑅 ⊆ ( t+ ‘ 𝑅 ) ∨ ( t+ ‘ 𝑅 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid | ⊢ ( 𝑅 ∈ V ∨ ¬ 𝑅 ∈ V ) | |
| 2 | trclfvlb | ⊢ ( 𝑅 ∈ V → 𝑅 ⊆ ( t+ ‘ 𝑅 ) ) | |
| 3 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( t+ ‘ 𝑅 ) = ∅ ) | |
| 4 | 2 3 | orim12i | ⊢ ( ( 𝑅 ∈ V ∨ ¬ 𝑅 ∈ V ) → ( 𝑅 ⊆ ( t+ ‘ 𝑅 ) ∨ ( t+ ‘ 𝑅 ) = ∅ ) ) |
| 5 | 1 4 | ax-mp | ⊢ ( 𝑅 ⊆ ( t+ ‘ 𝑅 ) ∨ ( t+ ‘ 𝑅 ) = ∅ ) |