Description: The transitive closure of a relation is idempotent. (Contributed by RP, 29-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trclidm | |- ( R e. V -> ( t+ ` ( t+ ` R ) ) = ( t+ ` R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex | |- ( t+ ` R ) e. _V |
|
2 | trclfvcotr | |- ( R e. V -> ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) ) |
|
3 | cotrtrclfv | |- ( ( ( t+ ` R ) e. _V /\ ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) ) -> ( t+ ` ( t+ ` R ) ) = ( t+ ` R ) ) |
|
4 | 1 2 3 | sylancr | |- ( R e. V -> ( t+ ` ( t+ ` R ) ) = ( t+ ` R ) ) |