Metamath Proof Explorer


Theorem trclidm

Description: The transitive closure of a relation is idempotent. (Contributed by RP, 29-Apr-2020)

Ref Expression
Assertion trclidm
|- ( R e. V -> ( t+ ` ( t+ ` R ) ) = ( t+ ` R ) )

Proof

Step Hyp Ref Expression
1 fvex
 |-  ( t+ ` R ) e. _V
2 trclfvcotr
 |-  ( R e. V -> ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) )
3 cotrtrclfv
 |-  ( ( ( t+ ` R ) e. _V /\ ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) ) -> ( t+ ` ( t+ ` R ) ) = ( t+ ` R ) )
4 1 2 3 sylancr
 |-  ( R e. V -> ( t+ ` ( t+ ` R ) ) = ( t+ ` R ) )