Metamath Proof Explorer


Theorem cotrtrclfv

Description: The transitive closure of a transitive relation. (Contributed by RP, 28-Apr-2020)

Ref Expression
Assertion cotrtrclfv
|- ( ( R e. V /\ ( R o. R ) C_ R ) -> ( t+ ` R ) = R )

Proof

Step Hyp Ref Expression
1 trclfv
 |-  ( R e. V -> ( t+ ` R ) = |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } )
2 1 adantr
 |-  ( ( R e. V /\ ( R o. R ) C_ R ) -> ( t+ ` R ) = |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } )
3 simpr
 |-  ( ( R e. V /\ ( R o. R ) C_ R ) -> ( R o. R ) C_ R )
4 ssid
 |-  R C_ R
5 3 4 jctil
 |-  ( ( R e. V /\ ( R o. R ) C_ R ) -> ( R C_ R /\ ( R o. R ) C_ R ) )
6 trcleq2lem
 |-  ( r = R -> ( ( R C_ r /\ ( r o. r ) C_ r ) <-> ( R C_ R /\ ( R o. R ) C_ R ) ) )
7 6 elabg
 |-  ( R e. V -> ( R e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } <-> ( R C_ R /\ ( R o. R ) C_ R ) ) )
8 7 adantr
 |-  ( ( R e. V /\ ( R o. R ) C_ R ) -> ( R e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } <-> ( R C_ R /\ ( R o. R ) C_ R ) ) )
9 5 8 mpbird
 |-  ( ( R e. V /\ ( R o. R ) C_ R ) -> R e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } )
10 intss1
 |-  ( R e. { r | ( R C_ r /\ ( r o. r ) C_ r ) } -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ R )
11 9 10 syl
 |-  ( ( R e. V /\ ( R o. R ) C_ R ) -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ R )
12 2 11 eqsstrd
 |-  ( ( R e. V /\ ( R o. R ) C_ R ) -> ( t+ ` R ) C_ R )
13 trclfvlb
 |-  ( R e. V -> R C_ ( t+ ` R ) )
14 13 adantr
 |-  ( ( R e. V /\ ( R o. R ) C_ R ) -> R C_ ( t+ ` R ) )
15 12 14 eqssd
 |-  ( ( R e. V /\ ( R o. R ) C_ R ) -> ( t+ ` R ) = R )