Metamath Proof Explorer


Theorem cotrtrclfv

Description: The transitive closure of a transitive relation. (Contributed by RP, 28-Apr-2020)

Ref Expression
Assertion cotrtrclfv ( ( 𝑅𝑉 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) → ( t+ ‘ 𝑅 ) = 𝑅 )

Proof

Step Hyp Ref Expression
1 trclfv ( 𝑅𝑉 → ( t+ ‘ 𝑅 ) = { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
2 1 adantr ( ( 𝑅𝑉 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) → ( t+ ‘ 𝑅 ) = { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
3 simpr ( ( 𝑅𝑉 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) → ( 𝑅𝑅 ) ⊆ 𝑅 )
4 ssid 𝑅𝑅
5 3 4 jctil ( ( 𝑅𝑉 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) → ( 𝑅𝑅 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) )
6 trcleq2lem ( 𝑟 = 𝑅 → ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) ↔ ( 𝑅𝑅 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) ) )
7 6 elabg ( 𝑅𝑉 → ( 𝑅 ∈ { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ↔ ( 𝑅𝑅 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) ) )
8 7 adantr ( ( 𝑅𝑉 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) → ( 𝑅 ∈ { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ↔ ( 𝑅𝑅 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) ) )
9 5 8 mpbird ( ( 𝑅𝑉 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) → 𝑅 ∈ { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
10 intss1 ( 𝑅 ∈ { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } → { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ⊆ 𝑅 )
11 9 10 syl ( ( 𝑅𝑉 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) → { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ⊆ 𝑅 )
12 2 11 eqsstrd ( ( 𝑅𝑉 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) → ( t+ ‘ 𝑅 ) ⊆ 𝑅 )
13 trclfvlb ( 𝑅𝑉𝑅 ⊆ ( t+ ‘ 𝑅 ) )
14 13 adantr ( ( 𝑅𝑉 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) → 𝑅 ⊆ ( t+ ‘ 𝑅 ) )
15 12 14 eqssd ( ( 𝑅𝑉 ∧ ( 𝑅𝑅 ) ⊆ 𝑅 ) → ( t+ ‘ 𝑅 ) = 𝑅 )