Metamath Proof Explorer


Theorem trclidm

Description: The transitive closure of a relation is idempotent. (Contributed by RP, 29-Apr-2020)

Ref Expression
Assertion trclidm ( 𝑅𝑉 → ( t+ ‘ ( t+ ‘ 𝑅 ) ) = ( t+ ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 fvex ( t+ ‘ 𝑅 ) ∈ V
2 trclfvcotr ( 𝑅𝑉 → ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) )
3 cotrtrclfv ( ( ( t+ ‘ 𝑅 ) ∈ V ∧ ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) ) → ( t+ ‘ ( t+ ‘ 𝑅 ) ) = ( t+ ‘ 𝑅 ) )
4 1 2 3 sylancr ( 𝑅𝑉 → ( t+ ‘ ( t+ ‘ 𝑅 ) ) = ( t+ ‘ 𝑅 ) )