Description: The transitive closure of a relation is idempotent. (Contributed by RP, 29-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trclidm | ⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ ( t+ ‘ 𝑅 ) ) = ( t+ ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex | ⊢ ( t+ ‘ 𝑅 ) ∈ V | |
2 | trclfvcotr | ⊢ ( 𝑅 ∈ 𝑉 → ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) ) | |
3 | cotrtrclfv | ⊢ ( ( ( t+ ‘ 𝑅 ) ∈ V ∧ ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) ) → ( t+ ‘ ( t+ ‘ 𝑅 ) ) = ( t+ ‘ 𝑅 ) ) | |
4 | 1 2 3 | sylancr | ⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ ( t+ ‘ 𝑅 ) ) = ( t+ ‘ 𝑅 ) ) |