Description: The transitive closure of a relation is idempotent. (Contributed by RP, 29-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trclidm | ⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ ( t+ ‘ 𝑅 ) ) = ( t+ ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( t+ ‘ 𝑅 ) ∈ V | |
| 2 | trclfvcotr | ⊢ ( 𝑅 ∈ 𝑉 → ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) ) | |
| 3 | cotrtrclfv | ⊢ ( ( ( t+ ‘ 𝑅 ) ∈ V ∧ ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) ) → ( t+ ‘ ( t+ ‘ 𝑅 ) ) = ( t+ ‘ 𝑅 ) ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ ( t+ ‘ 𝑅 ) ) = ( t+ ‘ 𝑅 ) ) |