Metamath Proof Explorer


Theorem trrelsuperreldg

Description: Concrete construction of a superclass of relation R which is a transitive relation. (Contributed by RP, 25-Dec-2019)

Ref Expression
Hypotheses trrelsuperreldg.r
|- ( ph -> Rel R )
trrelsuperreldg.s
|- ( ph -> S = ( dom R X. ran R ) )
Assertion trrelsuperreldg
|- ( ph -> ( R C_ S /\ ( S o. S ) C_ S ) )

Proof

Step Hyp Ref Expression
1 trrelsuperreldg.r
 |-  ( ph -> Rel R )
2 trrelsuperreldg.s
 |-  ( ph -> S = ( dom R X. ran R ) )
3 relssdmrn
 |-  ( Rel R -> R C_ ( dom R X. ran R ) )
4 1 3 syl
 |-  ( ph -> R C_ ( dom R X. ran R ) )
5 4 2 sseqtrrd
 |-  ( ph -> R C_ S )
6 xptrrel
 |-  ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( dom R X. ran R )
7 6 a1i
 |-  ( ph -> ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( dom R X. ran R ) )
8 2 2 coeq12d
 |-  ( ph -> ( S o. S ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) )
9 7 8 2 3sstr4d
 |-  ( ph -> ( S o. S ) C_ S )
10 5 9 jca
 |-  ( ph -> ( R C_ S /\ ( S o. S ) C_ S ) )