Metamath Proof Explorer


Theorem trrelsuperreldg

Description: Concrete construction of a superclass of relation R which is a transitive relation. (Contributed by RP, 25-Dec-2019)

Ref Expression
Hypotheses trrelsuperreldg.r ( 𝜑 → Rel 𝑅 )
trrelsuperreldg.s ( 𝜑𝑆 = ( dom 𝑅 × ran 𝑅 ) )
Assertion trrelsuperreldg ( 𝜑 → ( 𝑅𝑆 ∧ ( 𝑆𝑆 ) ⊆ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 trrelsuperreldg.r ( 𝜑 → Rel 𝑅 )
2 trrelsuperreldg.s ( 𝜑𝑆 = ( dom 𝑅 × ran 𝑅 ) )
3 relssdmrn ( Rel 𝑅𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) )
4 1 3 syl ( 𝜑𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) )
5 4 2 sseqtrrd ( 𝜑𝑅𝑆 )
6 xptrrel ( ( dom 𝑅 × ran 𝑅 ) ∘ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( dom 𝑅 × ran 𝑅 )
7 6 a1i ( 𝜑 → ( ( dom 𝑅 × ran 𝑅 ) ∘ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( dom 𝑅 × ran 𝑅 ) )
8 2 2 coeq12d ( 𝜑 → ( 𝑆𝑆 ) = ( ( dom 𝑅 × ran 𝑅 ) ∘ ( dom 𝑅 × ran 𝑅 ) ) )
9 7 8 2 3sstr4d ( 𝜑 → ( 𝑆𝑆 ) ⊆ 𝑆 )
10 5 9 jca ( 𝜑 → ( 𝑅𝑆 ∧ ( 𝑆𝑆 ) ⊆ 𝑆 ) )