| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trrelsuperreldg.r |
⊢ ( 𝜑 → Rel 𝑅 ) |
| 2 |
|
trrelsuperreldg.s |
⊢ ( 𝜑 → 𝑆 = ( dom 𝑅 × ran 𝑅 ) ) |
| 3 |
|
relssdmrn |
⊢ ( Rel 𝑅 → 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
| 4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
| 5 |
4 2
|
sseqtrrd |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑆 ) |
| 6 |
|
xptrrel |
⊢ ( ( dom 𝑅 × ran 𝑅 ) ∘ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( dom 𝑅 × ran 𝑅 ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( ( dom 𝑅 × ran 𝑅 ) ∘ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
| 8 |
2 2
|
coeq12d |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝑆 ) = ( ( dom 𝑅 × ran 𝑅 ) ∘ ( dom 𝑅 × ran 𝑅 ) ) ) |
| 9 |
7 8 2
|
3sstr4d |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) |
| 10 |
5 9
|
jca |
⊢ ( 𝜑 → ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) |