Metamath Proof Explorer


Theorem trrelsuperreldg

Description: Concrete construction of a superclass of relation R which is a transitive relation. (Contributed by RP, 25-Dec-2019)

Ref Expression
Hypotheses trrelsuperreldg.r φ Rel R
trrelsuperreldg.s φ S = dom R × ran R
Assertion trrelsuperreldg φ R S S S S

Proof

Step Hyp Ref Expression
1 trrelsuperreldg.r φ Rel R
2 trrelsuperreldg.s φ S = dom R × ran R
3 relssdmrn Rel R R dom R × ran R
4 1 3 syl φ R dom R × ran R
5 4 2 sseqtrrd φ R S
6 xptrrel dom R × ran R dom R × ran R dom R × ran R
7 6 a1i φ dom R × ran R dom R × ran R dom R × ran R
8 2 2 coeq12d φ S S = dom R × ran R dom R × ran R
9 7 8 2 3sstr4d φ S S S
10 5 9 jca φ R S S S S